Current trends in the production and application of titanium alloys

Authors

DOI:

https://doi.org/10.15802/tpm.4.2025.05

Keywords:

titanium, alloys, mechanical properties, biocompatibility, corrosion resistance, industry, remelting, additive manufacturing

Abstract

Purpose: Analysis of the state of scientific research in the field of production and application of titanium alloys and trends in their development over the past 20 years. Methodology: Narrative review and analysis of the literature with the most current publications in open sources Google Scholar, Sciencedirect, Researchgate, Scopus. Results: Titanium is distinguished by its strength, low density, corrosion resistance, biocompatibility and heat resistance, which makes it important for industry. More than 100 titanium alloys have been created, of which only 20–30 have reached commercial status. The most common is Ti-6Al-4V (over 50% of applications), another 20–30% are pure titanium alloys. They are used in the aerospace, medical, automotive and chemical sectors. Titanium metallurgy is based on vacuum arc and electron beam remelting, but an active search for alternative technologies continues, such as electroslag remelting of titanium alloys. Additive technologies are also being actively introduced. The scientific novelty lies in the comprehensive generalization of modern research related to the production and application of titanium alloys with an emphasis on modern methods of remelting titanium charge into a finished product. The publication includes the most relevant sources that are not yet available in other reviews. Practical significance. The publication will help scientists, engineers, teachers, and students to quickly navigate the array of existing knowledge, avoid duplication of research, and better plan further activities.

References

Lütjering, G. (2007). Titanium. Berlin:Springer, Heidelberg. https://doi.org/10.1007/978-3-540-73036-1.

Polmear, I. J. (2005). Light Alloys. Oxford:Butterworth-Heinemann. https://doi.org/10.1016/B978-0-7506-6371-7.X5000-2.

Ignatiev, V. S., Holovachov, A. M., Kolbin, M. O., & Yaroshenko, Ya. O. (2025). Promising metal-thermal technologies for titanium production. Theory and practice of metallurgy,1(146), 95-99. https://doi.org/10.15802/tpm.1.2025.13.

Motyka, M., Ziaja, W., Sieniawsk, J., Motyka, M., Ziaja W., & Sieniawsk J. (2019). Titanium Alloys - Novel Aspects of Their Manufacturing and Processing.

Donachie, M. J. (2000). Titanium: A Technical Guide. Materials Park, Ohio: Asm Intl. https://doi.org/10.31399/asm.tb.ttg2.9781627082693.

Fashu, S., Lototskyy, M., & Davids, M. W. (2020). A review on crucibles for induction melting of titanium alloys. Materials & Design, 186, 1-13.

Ryabtsev, A. D., Troyanskyi, O. A., Davydov, S. I., Pashinskyi, V. V., Snizhko, O. A., Ratiev, S. M., & Leokha, F. L. (2012). Possibilities of chamber electroslag remelting in obtaining titanium of commercial purity. Modern Electrometallurgy, (1), 7-11. http://jnas.nbuv.gov.ua/article/UJRN-0000472332.

Marin, E., & Lanzutt,i A. (2024). Biomedical Applications of Titanium Alloys: A Comprehensive Review. Materials, 17(1),. 1-42. https://doi.org/10.3390/ma17010114.

Cunha, A., Renz, R. P., Blando, E. (2014). Osseointegration of atmospheric plasma-sprayed titanium implants: Influence of the native oxide layer. Journal of Biomedical Materials Research Part A, 102(1), 30-36. https://doi.org/10.1002/jbm.a.34667.

Brånemark, R., Brånemark, P. I., Rydevik, B., & Myers, R. R. (2001). Osseointegration in skeletal reconstruction and rehabilitation: a review. Journal of Rehabilitation Research and Development, 38(2), 175-181. https://www.rehab.research.va.gov/jour/01/38/2/pdf/branemark.pdf.

Martín-Cameán, A., Jos, A., Puerto, M., Calleja, A., Iglesias-Linares, A., Solano, E., & Cameán, A. M. (2015). In vivo determination of aluminum, cobalt, chromium, copper, nickel, titanium and vanadium in oral mucosa cells from orthodontic patients with mini-implants by Inductively coupled plasma-mass spectrometry (ICP-MS). Journal of Trace Elements in Medicine and Biology, 32, 13-20. https://doi.org/10.1016/j.jtemb.2015.05.001.

Weiss, I., & Semiatin, S. L. (1999). Thermomechanical processing of alpha titanium alloys—an overview. Materials Science and Engineering, 263(2), 243-256. https://doi.org/10.1016/S0921-5093(98)01155-1.

Bania, P. J. (1994). Beta titanium alloys and their role in the titanium industry. JOM, 46(7), 16-19. https://doi.org/10.1007/BF03220742.

Martin, J. (2006). Materials for Engineering. Woodhead Publishing, 269 p.

Leyens, C., & Peters, M. (ed.). (2003). Titanium and Titanium Alloys: Fundamentals and Applications. Weinheim : Chichester:Wiley-VCH, 532 p. https://www.amazon.com/Titanium-Alloys-Fundamentals-Applications/dp/ 3527303.

Gospodinov, D., & Ferdinandov, N. (2016). Classification, properties and application of titanium and its alloys. ResearchGate, 55(2), 27-32. http://conf.uni-ruse.bg/bg/docs/cp16/2/2-5.pdf.

Banerjee, D., & Williams, J. C. (2013). Perspectives on Titanium Science and Technology. Acta

Veiga, C., Davim, J. P., & Loureiro, A. (2012). Properties and applications of titanium alloys: A brief review. Reviews on Advanced Materials Science, 32,133-148.

Ren, Y., Wang, F., Tan, C., Wang, S., Yu, X., Jiang, J., Ma, H., & Cai, H. (2013). Shock-induced mechanical response and spall fracture behavior of an extra-low interstitial grade Ti–6Al–4V alloy. Materials Science and Engineering, 578, 247-255. https://doi.org/10.1016/j.msea.2013.04.080.

Paton, B. E., Trygub, M. P., Akhonin, S. V., & Zhuk, G. V. (2006). Electron beam melting of titanium. Naukova dumka, 248.

Kolobov, G. O., Karpenko, A. V., & Bubynets, O. V. (2016). Refining remelts and other methods for obtaining high-purity titanium. New materials and technologies in metallurgy and mechanical engineering, 2, 9-17.

Akhonin, S. V., Berezos, V. A., Pikulin, A. N., Severin, A. Yu., Shvab, S. L., & Erokhin A. G. (2018). Producing of high-strength titanium alloy VT22 by method of electron beam melting. Electrometallurgy Today, 3, 6-15. http://dx.doi.org/10.15407/sem2018.03.01.

Berezos, V. O., & Akhonin, D. S. (2023). Electron beam melting of titanium alloys for medical purposes. Electrometallurgy Today, 5-13. https://doi.org/10.37434/sem2023.02.01.

Sung, S. Y., & Kim, Y. J. (2007). Melting and Casting of Titanium Alloys. Materials Science Forum, 539-543, 3601-3606. https://doi.org/10.4028/www.scientific.net/MSF.539-543.3601.

Shapovalov, V. A., Tsykulenko, K. A., Sheiko, I. V., & Kolesnichenko, V. I. (2010). Plasma metallurgy and the service life of plasma torches. Modern electrometallurgy, (4), 20-26.

Lakomsky, V. I. (1974). Plasma-arc melting. Tekhnika.

Oh, J.-M., Roh, K.-M., & Lim, J.-W. (2016). Brief review of removal effect of hydrogen-plasma arc melting on refining of pure titanium and titanium alloys. International Journal of Hydrogen Energy, 41(48), 23033-23041. https://doi.org/10.1016/j.ijhydene.2016.09.082.

Jarczyk, G., & Franz, K. (2012). Vacuum melting equipment and technologies for advanced materials. Archives of materials science and engineering,56, 82-88.

Paton, B. E., & Medovar, B. I. (1958). Electroslag remelting of steels and alloys in a copper water-cooled crystallizer. Automatic welding, 11, 5-15.

Ryabtsev, A. D., Leokha, F. L., & Ratiev, S. M. (2013). Chamber electroslag remelting is an effective method for refining and alloying titanium. Metallurgical processes and equipment, 3, 26-32. http://www.irbis-nbuv.gov.ua/publ/REF-0000439584

Ryabtsev, A. D., Troyansky, O. A., Ratiev, S. M., Snizhko, O. A., & Leokha, F. L. (2011). Refining and alloying of titanium in the process of chamber electroslag remelting. Sciences of DonNTU. Metallurgy, 13(194), 148-156.

Ratiev, S. M., Ryabtseva, O. A., Troyansky, O. A., Ryabtsev, A. D., Davidov, S. I., & Shvartsman, L. Ya. (2010). Curing of titanium with acid in the gas phase during chamber electroslag remelting of titanium sponge. Current electrometallurgy, 2, 8-12. http://jnas.nbuv.gov.ua/article/UJRN-0000471062.

Ryabtsev, A. D., Troyansky, O. A., Friedrich, B., Pashinsky, V. V., Leokha, F. L., & Ratiev, S. M. (2014). Refining titanium with carbon in the process of chamber electroslag remelting. Current electrometallurgy, 2(115), 3-9.

Pavligo, T. M. (2023). Standards for additive virobnitstva (look back). Interuniversity collection “Scientific additions”. 76, 16-28. https://doi.org/10.36910/775.24153966.2023.76.3.

Trevisan, F., Calignano, F., Aversa, A., Marchese, G., Lombardi, M., Biamino, S., Ugues, D., & Manfredi, D. (2018). Additive manufacturing of titanium alloys in the biomedical field: processes, properties and applications. Journal of Applied Biomaterials & Functional Materials, 16(2), 57-67. http://dx.doi.org/10.5301/jabfm.5000371.

Downloads

Published

2025-12-28

How to Cite

Leokha , F., & Khrychikov , V. (2025). Current trends in the production and application of titanium alloys. Theory and Practice of Metallurgy, (4), 30–36. https://doi.org/10.15802/tpm.4.2025.05

Issue

Section

Articles