Decarbonisation challenges for steelmaking and scrap recycling role

Authors

DOI:

https://doi.org/10.15802/tpm.1.2025.06

Keywords:

decarbonization, steelmaking, scrap recycling, iron recovery

Abstract

This article discusses the challenges the steelmaking industry faces in striving to achieve competitive alternatives and potential solutions in response to the imperatives of decarbonization and zero-waste manufacturing. Expanding scrap recycling is a logical practical solution that the steel industry must pursue to effectively reduce its carbon emissions amidst its current structure.  One of the steps towards achieving this is by utilizing alternative scrap sources to enhance iron recovery. The Recovery Slagged Scrap (RSS) from steelmaking includes metal pieces covered by low-conductive slag, which changes its melting behaviour. Analysis of trials results has shown that adding RSS to BOF iron-bearing charge mix can speed up the formation of primary slag and at proper consumption does not pose technological difficulties. Utilizing RSS as a coolant or slag-forming addition may improve the melting process and provide cost reduction of a charge mix for a steelmaking facility.

References

December 2024 crude steel production and 2024 global crude steel production totals. Worldsteel.org, https://worldsteel.org/media/press-releases/2025/december-2024-crude-steel-production-and-2024-global-totals

Iron Ore Mining Market Analysis by Reserves, Production, Assets, Demand Drivers and Forecast to 2030. GlobalData. https://www.globaldata.com/store/report/iron-ore-mining-market-analysis

Manocha, S., & Ponchon, F. (2018). Management of Lime in Steel. Metals, 8(9), 686. https://doi.org/10.3390/met8090686

The European Magnesite/Magnesia Industry: enabler in the transition to a low-carbon economy. (2020). Euromines. https://www.euromines.org/files/euromines_magnesite-decarbonisation_297x210mm_fin.pdf

Global Low-carbon Metallurgy Innovation Forum. WorldSteel Association. https://worldsteel.org/media-centre/industry-member-news/2021-member-news/baowu-organises-2021-global-low-carbon-metallurgical-alliance-conference/

Making strides towards a low-carbon future. Nature.com. https://www.nature.com/articles/d42473-023-00009-8

Hoffmann, C., Van Hoey, M., & Zeumer, B. (2020). Decarbonization challenge for steel. MacKinsey&Company website. https://www.mckinsey.com/industries/metals-and-mining/our-insights/decarbonization-challenge-for-steel/

World Steel in Figures 2024. Worldsteel.org

Iron and Steel Technology Roadmap. (2020). International Energy Agency. https://iea.blob.core.windows.net/assets/eb0c8ec1-3665-4959-97d0-187ceca189a8/Iron_and_Steel_Technology_Roadmap.pdf

Birat, J.-P., Lorrain, J.-P., & de Lassat, Y. (2009). The "CO2 tool": CO2 emissions & energy consumption of existing & breakthrough steelmaking routes. Revue de Métallurgie, 9, 325-336

The potential of hydrogen for decarbonising steel production. Eeuropa.eu. https://www.europarl.europa.eu/RegData/etudes/BRIE/2020/641552/EPRS_BRI(2020)641552_EN.pdf

Younas, M., Shafique, S., Hafeez, A., Javed, F., & Rehman, F. (2022). An Overview of Hydrogen Production: Current Status, Potential, and Challenges. Fuel, 316, 123317

Gabriel, K. S., El-Emam, R. S., & Zamfirescu, C. (2022). Technoeconomics of large-scale clean hydrogen production – A review. International Journal of Hydrogen Energy, 47(72), 30788-30798

Sadoway, D. R. (1991). Electrochemical Processing of Refractory Metals. Journal of Metals, 43(7), 15-19

Allanore, A. (2015). Features and challenges of molten oxide electrolytes for metal extraction. J Electrochem Soc, 162, E13–E22

Allanore, A., Yin, L., & Sadoway, D. R. (2013). A new anode material for oxygen evolution in molten oxide electrolysis. Nature, 497, 353–357

Joint Research Centre. (2022). EU climate targets: how to decarbonise the steel industry. https://joint-research-centre.ec.europa.eu/jrc-news-and-updates/eu-climate-targets-how-decarbonise-steel-industry-2022-06-15_en

Voraberger, B., Wimmer, G., Dieguez Salgado, U., Wimmer, E., Pastucha, K., & Fleischanderl, A. (2022). Green LD (BOF) Steelmaking – Reduced CO2 Emissions via Increased Scrap Rate. Metals, 12(3), 466. https://doi.org/10.3390/met12030466

Fan, Z., & Friedmann, S. J. (2021). Low-carbon production of iron and steel: Technology options, economic assessment, and policy. Joule, 5(4), 829-862

Wimmer, G., Voraberger, B., Kradel, B., & Fleischanderl, A. (2022). Breakthrough Pathways to Decarbonize the Steel Sector. Mitsubishi Heavy Industries Technical Review, 59(4), 1-7. https://www.mhi.co.jp/technology/review/pdf/e594/e594120.pdf

Metals Magazine. https://magazine.primetals.com/2022/12/12/steelanol-market-ready-carbon-capture-and-utilization-technology/

Benavides, K., Gurgel, A., Morris, J., et al. (2024). Mitigating emissions in the global steel industry: Representing CCS and hydrogen technologies in integrated assessment modelling. International Journal of Greenhouse Gas Control, 131, 103963. https://doi.org/10.1016/j.ijggc.2023.103963

Website. www.bse-kehl.de

Yang, J., Firsbach, F., & Sohn, I. (2022). Pyrometallurgical processing of ferrous slag "co-product" zero waste full utilization: A critical review. Resources, Conservation and Recycling, 178, 106021, https://doi.org/10.1016/j.resconrec.2021.106021

Das, B., Prakash, S., Reddy, P. S. R., & Misra, V. N. (2007). An overview of utilization of slag and sludge from steel industries. Resources, Conservation and Recycling, 50(1), 40-57, https://doi.org/10.1016/j.resconrec.2006.05.008

Branca, T. A., Colla, V., Algermissen, D., Granbom, H., Martini, U., Morillon, A., Pietruck, R., & Rosendahl, S. (2020). Reuse and Recycling of By-Products in the Steel Sector: Recent Achievements Paving the Way to Circular Economy and Industrial Symbiosis in Europe. Metals, 10, 345. https://doi.org/10.3390/met10030345

Li, Z., Li, J., Spooner, S., & Seetharaman, S. (2022). Basic Oxygen Steelmaking Slag: Formation, Reaction, and Energy and Material Recovery. Steel Research Int., 93, 2100167. https://doi.org/10.1002/srin.202100167

Yi, H., Xu, G., Cheng, H., Wang, J., Wan, Y., & Chen, H. (2012). An Overview of Utilization of Steel Slag. Procedia Environmental Sciences, 16, https://doi.org/10.1016/j.proenv.2012.10.108

Andrés-Vizán, S. M., Villanueva-Balsera, J. M., Álvarez-Cabal, J. V., & Martínez-Huerta, G. M. (2020). Classification of BOF Slag by Data Mining Techniques According to Chemical Composition. Sustainability, 12, 3301. https://doi.org/10.3390/su12083301

Sheremet, V. A., Kekukh, A. V., Orel, G. A., Kostenko, G. P., Brodskij, A. S., Mukhachev, A. A., Stovpchenko A.P., & Romanenko, I. V. (2004). Efficiency of using the small size metal particles from slag dumps. Stal, (6), 34-36

González, O. J. P. , Ramírez-Argáez, M. A., & Conejo A. N. (2010). Mathematical Modeling of the Melting Rate of Metallic Particles in the Electric Arc Furnace, ISIJ Int., 50 (1), 9–16

Gao, M., Gao, J. T., Zhang, Y. L., & Yang, S. F. (2021). Evaluation and Modeling of Scrap Utilization in the Steelmaking Process. JOM, 73, 712–720. https://doi.org/10.1007/s11837-020-04529-2

Kitamura Sh. (2017). Dissolution Behavior of Lime into Steelmaking Slag. ISIJ International, 57(10), 1670-1676. https://doi.org/10.2355/isijinternational.ISIJINT-2017-109

Martinsson, J., Glaser, B. & Sichen, D. (2018). Lime Dissolution in Foaming BOF Slag. Metallurgical and Materials Transactions B, 49. https://doi.org/10.1007/s11663-018-1421-6

Kumar, S. D., Prasad, G., Ghorui, P. K. & Ranjan, M. (2008). Coolant strategies for BOF steelmaking, Ironmaking & Steelmaking, 35(7), 539-544. https://doi.org/10.1179/174328108X335159

Yi, H., Xu, G., Cheng, H., Wang, J., Wan, Y., & Chen, H. (2012). An Overview of Utilization of Steel Slag. Procedia Environmental Sciences, 16. https://doi.org/10.1016/j.proenv.2012.10.10

Downloads

Published

2025-02-21

How to Cite

Stovpchenko , G., & Medovar , L. (2025). Decarbonisation challenges for steelmaking and scrap recycling role. Theory and Practice of Metallurgy, (1), 42–48. https://doi.org/10.15802/tpm.1.2025.06

Issue

Section

Articles