The-state-Art of steelmaking technology based on hydrogen metallurgy

Authors

  • ZhouHua Jiang School of Metallurgy, State Key Laboratory of Digital Steel, Northeastern University, Liaoning, China https://orcid.org/0000-0001-8887-7250
  • Ce Yang School of Metallurgy, Northeastern University, Liaoning, China
  • HongChun Zhu School of Metallurgy, Northeastern University, Liaoning, China
  • HongBin Lu School of Metallurgy, Northeastern University, Liaoning, China

DOI:

https://doi.org/10.15802/tpm.1.2025.03

Keywords:

hydrogen metallurgy, steelmaking, hydrogen plasma, melting, refining, green and low-carbon

Abstract

This paper puts forward the viewpoint that “hydrogen steelmaking” replaces “oxygen steelmaking”, and summarizes and evaluates the research status of “hydrogen steelmaking”. Hydrogen metallurgy steelmaking has unique advantages in energy saving, consumption reduction and product quality improvement. On the one hand, hydrogen has a highly efficient melting effect, which can effectively reduce the energy consumption of steelmaking. “Hydrogen” in plasma state has the characteristics of high temperature and high thermal conductivity, which can be used as a highly efficient heat source to realize the melting of charge and heating of steel, and has been applied in steelmaking processes such as EAF, converter and tundish. Blowing gaseous “Hydrogen” can accelerate the homogenization in the composition and temperature, and the movement of hydrogen bubbles can be adhered to the non-metallic inclusions which can be accelerated to float out. At the same time, hydrogen reacts with oxygen in the liquid steel to release a large amount of heat, which improves the thermodynamic and kinetic conditions of the melt pool reaction. In addition, “Hydrogen” can inhibit oxidation and reduce the loss of Cr, Mn and other alloying elements by creating a reducing atmosphere. On the other hand, “Hydrogen” has a non-polluting refining effect that significantly improves the cleanliness of the steel. Based on the high activity and high reducibility of “Hydrogen”, “Hydrogen” can effectively remove impurity elements such as O, C, N, S and P in steel, especially “Hydrogen” in plasma state, which can directly react with the impurity elements to generate H2O, CH4, NH3, H2S and PH3 and other gaseous products that are easy to be volatilized and removed, so as to avoid the formation of non-metallic inclusions, and to realize the highly efficient and high-cleanliness steelmaking with “zero inclusions”. Therefore, the development of a new generation of green, near-zero carbon, “zero inclusion” and pollution-free steelmaking process using “hydrogen” instead of “carbon” will accelerate the green, high-quality, and sustainable development of the steel industry.

References

Lu, L. J., Wang, F., Wang, H. F., Qiu, J., & Ping, X. D. (2024). J. Iron Steel Res, 36(2), 150-162

Tong, S., Ai, L. Q., Hong, L. G., Zhou, M. J., & Yuan, Y. P. (2023). Mater. Rep, 37(23), 117-124

Y, J., Xu, L., Liu, Z. P., & Chen, H. Z. (2022). China Metall, 32(4), 1-8

Wang, Z., Xiao, L. J., & Gan, Y. (2024). Mater. Rep, 38(03), 101-107

Li, X. (2022). China Plant Engineering, (4), 1

Yang, Z. W., Yu, J. B., Zhang, Y. F., Wang, J., & Ren, Z. M. (2023). China Metall, 33(12), 31-41

Lu, L. J., Wang, F., Wang, H. F., Qiu, J., & Ping, X. D. (2024). Iron & Steel, 59(03), 183-196

Zhang, S. C., Jiang, Z. H., Li, H. B., Zahng, W., Li, G. P., & Fan, G. W. (2019). J. Iron Steel Res, 31(2), 132-144

Okolie, J. A., Patra, B. R., Mukherjee, A., Nanda, S., Dalai, K., & Kozinski, A. (2021). Int. J. Hydrogen Energy, 46(13), 8885-8905

Liu, W., Zuo, H., Wang, J., Xue, Q. G., Ren, B. L., & Yang, F. (2021). Int. J. Hydrogen Energy, 46(17), 10548-10569

Zhao, Z. L. (2023). Sustainable Mining and Metallurgy, 39(5), 1-8

Yu, Y., Wang, F., Qi, Y. H., Zheng, A. J., & Li, Y. (2024). J. Iron Steel Res, 36(3), 283-298

Wu, G. Y., & Dai, Y. N. (1998). J. Kunming Univ. Sci. Technol., Sci. Technol, (3), 110-117+122

Zhang, Y. W., Ding, W. Z., Guo, S. Q., & Hu, X. K. (2004). Shanghai Met, (4), 17-20

Zarl, M. A., Farkas, M. A., & Schenk, J. (2020). Metals, 10(10), 1394

Ding, C.Y., Xue, S., Chang, R. D., Jiang, F., & Long, H. M. (2024). J. Iron Steel Res, 36(05), 568-579

Hu, M. L., Li, Z. X., Wei, J. G., Wei, X. G., & Wu, Z. H. (1985). Mater. Prot, (4), 2-5

Tang, H. Y., Liu, J. W., Wang, K. M., Xiao, H., & Li, Ai. W. (2021). Acta Metall. Sin, 57(10), 1229-1245

Zhang, H. S. (2010). PhD Thesis, Northeastern University

Ye, M. L. (2020). PhD Thesis, University of Science and Technology Beijing

Zhang, H. S., Zhan, D. P., Jiang, Z. H., Chen, Z. P., & Shen, H. J. (2009). Ind. Heat, 38(5), 10-13

Zhan, D. P., Zhang, H. S., Jiang, Z. H., Gong, W., Li, H. B., & Chen, Z. P. (2011). Adv. Mater. Res, 402, 142-146

Wan, T. J., Yuan, Z. F., Fan, Y. S., & Xin, C. (1991). Iron Steel Vanadium Titanium, (3), 75-79

Chen, K. Y., Chang, L. Z., & Wang, J. J. (2015). Wide and Heavy Plate, 21(5), 38-43

Li, J. S., Wang, C., Chen, Y. F., Yang, S. F., Liu, W., Bai, Y., Huang, Y. C., & Sun, Y. (2024). Special Steel, 45(1), 1-11

Mao, B., Tao, J. M., & Jiang, T. X. (2008). Continuous Casting, (5), 4-8

Liu, J. H., Pan, Y. K., He, Y., Zhang, J., Yan, B. J., & Deng, Z. Q. (2022). China, CN113337669B, 2022

Zheng, S. G., & Zhu, M. Y. (2008). Iron & Steel, (6), 25-29

Xue, Z. L., Wang, Y. F., Wang, L. T., Li, Z. B., & Zhang, J. W. (2003). Acta Metall. Sin, (4), 431-434

Liu, J. H., Zhang, J., & Li, K. W. (2017). Steelmaking, 33(2)(2017), 1-9+14

Li, K. W., Liu, J. H., Zhang, J., & Shen, S. B. (2017). Metall. Trans. B, 48(4), 2136-2146

Liu, J. H., Zhang, S., & He, Y. (2022). China, CN113621759B

He, Y., Xu, H., Liu, J. H., Zhang, J., Yan, B. J., & Deng, Z. Q. (2022). China, CN113373277B

He, Y., Liu, J. H., Zhang, J., Yan, B. J., & Deng, Z. Q. (2022). China, CN113355477B

Liu, J. H., Peng, H. B., He, Y., Yang, X. D., Xu, H., & You, D. L. (2022). Metals, 12(10), 1633

Xu, H., Liu, J. H., He, Y., & Liu, H. B. (2023). Clean Technol. Environ. Policy, 25(7), 2377-2391

Kumar, R., Saha, A. K., & Mandal, A. K. (2023). Can. Metall. Q, 62(2), 383-395

Kumar, R., Saha, A. K., Malik, K. N., & Mandal, A. K. (2023). JOM, 75(12), 5667-5675

Guo, X. L., Yu, J. B., Zhang, Y. J., Li, X., Wang, J., Liao, H. L., & Ren, Z. M. (2018). Metall. Trans. B, 49(6), 2951-2955

Guo, X. L., Yu, J. B., Zhang, Y. J., Liu, L., Liao, H. L., & Ren, Z. M. (2018). Int. J. Hydrogen Energy, 43(27), 12153-12157

Guo, X. L. (2019). PhD Thesis, Shanghai University

Mimura, K., Saito, K., & Isshiki, M. (1999). J. Jpn. Inst. Met, 63(9), 1811-1190

Jiang, Z. H., Zhu, H. C., Lu, H. B., Yao, C. L., Zheng, Y. J., Zhang, S. C., & Zheng, L. C. (2023). China, CN115679036A

Jiang, Z. H., Zhu, H. C., Lu, H. B., Yao, C. L., Zheng, Y. J., Zhang, S. C., & Zheng, L. C. (2024). China, CN115595401B

Xing, W., Ni, H. W., Zhang, H., & He, H. Y. (2009). The Chinese Journal of Process Engineering, 9(S1), 443-447

Makarov, M. A., & Aleksandrov, A. A. (2009). Russ. Metall, (2), 95-99

Cao, L., Zhu, L. G., Guo, Z. H., & Qiu, G. X. (2023). Ironmaking & Steelmaking, 50(4), 360-369

Liu, Y., Lu, Y. C., Wang, H. B., Zhu, Z. Y., Zhao, J., Wang, Z. M., Ma, C. W., Li, H. B., Wang, Y. L., Liu, B. S., Hao, N., Hu, X. T., Kuai, D. S., Xie, C. H., & Liu, G. L. (2022). China, CN114058785A

Xing, W., Ni, H. W., Zhang, H., He, H. Y., Cheng, R. J., & Xu, B. (2009). The Chinese Journal of Process Engineering, 9(S1), 234-237

Cao, L., Zhu, L. G., & Guo, Z. H. (2023). J. Iron Steel Res. Int, 30(1), 1-20

Liu, J. H., Zhang, J., He, Y., Ding, H., & Deng, Z. Q. (2018). China, CN106086315B

Liu, J. H., Zhang, S., He, Y., & Zhang, J. (2020). China, CN110592322B

Zhang, J., He, Y., Liu, J. H., Yan, B. J., Zhang, S., & Li, W. (2019). Vacuum, 168, 108803

Ren, Z. M., Li, X. F., Guo, X. L., Hou, Y., & Yu, J. B. (2019). China, CN105779699B

Zhang, J. (2020). PhD Thesis, University of Science and Technology Beijing

Chen, W., Wang, J. J., Chang, L. Z., Peng, C. S., & Meng, L. P. (2017). Continuous Casting, 42(2), 48-53

Meng, Y. Y., Wang, J. J., Zhou, L., Peng, C. S., & Meng, L. P. (2013). Chinese Society for Metals, Steelmaking Division, 406-412

Xing, W. (2009). PhD Thesis, Wuhan University of Science and Technology

Wang, H. J., Wang, J. J., Meng, Y. Y., Chang, L. Z., & Zhou, L. (2015). The Chinese Journal of Process Engineering, 37(3), 286-291

Xu, K. D. (2009). Acta Metall. Sin, 45(3), 257-269

Oh, J. M., Roh, K. M., & Lim, J. W. (2016). Int. J. Hydrogen Energy, 41(48), 23033-23041

Wang, C., Pan, G. P., Yang, C. Z., Zhang, J., & Zhao, P. (1997). Iron & Steel, (9), 21-24

Zhan, D. P., Zhang, H. S., Jiang, Z. H., Gong, W., & Chen, Z. P. (2011). Adv. Mater. Res, 239-242, 2361-2364

Wei, G. S., Li, X., Zhu, R., Xu, G. Y., Li, C., Chang, H., Feng, C., & Su, R. F. (2023). China, CN116356119B

Neuschütz, D., & Spirin, D. (2003). Steel Res. Int, 74(1), 19-25

Neuschütz, D., & Spirin, D. (2004). Chinese Society for Metals, German Iron and Steel Institute, 8

Zhao, B., Zhang, N., Peng, G. H., Wang, C. Y., Wu, W., & Wei, W. (2023). Special Steel, 44(2), 52-55

Dong, K., Wang, C. Y., Zhu, R., Liu, R. Z., Ren, X., & Liu, W. J. (2023). Iron & Steel, 58(8), 13-24

Zhang, X. Y., Jiao, K. X., Zhang, J. L., & Ziyu, G. (2021). J. Cleaner Prod, 306, 127259

Downloads

Published

2025-02-21

How to Cite

Jiang , Z., Yang , C., Zhu , H., & Lu , H. (2025). The-state-Art of steelmaking technology based on hydrogen metallurgy. Theory and Practice of Metallurgy, (1), 16–30. https://doi.org/10.15802/tpm.1.2025.03

Issue

Section

Articles