The-state-Art of steelmaking technology based on hydrogen metallurgy
DOI:
https://doi.org/10.15802/tpm.1.2025.03Keywords:
hydrogen metallurgy, steelmaking, hydrogen plasma, melting, refining, green and low-carbonAbstract
This paper puts forward the viewpoint that “hydrogen steelmaking” replaces “oxygen steelmaking”, and summarizes and evaluates the research status of “hydrogen steelmaking”. Hydrogen metallurgy steelmaking has unique advantages in energy saving, consumption reduction and product quality improvement. On the one hand, hydrogen has a highly efficient melting effect, which can effectively reduce the energy consumption of steelmaking. “Hydrogen” in plasma state has the characteristics of high temperature and high thermal conductivity, which can be used as a highly efficient heat source to realize the melting of charge and heating of steel, and has been applied in steelmaking processes such as EAF, converter and tundish. Blowing gaseous “Hydrogen” can accelerate the homogenization in the composition and temperature, and the movement of hydrogen bubbles can be adhered to the non-metallic inclusions which can be accelerated to float out. At the same time, hydrogen reacts with oxygen in the liquid steel to release a large amount of heat, which improves the thermodynamic and kinetic conditions of the melt pool reaction. In addition, “Hydrogen” can inhibit oxidation and reduce the loss of Cr, Mn and other alloying elements by creating a reducing atmosphere. On the other hand, “Hydrogen” has a non-polluting refining effect that significantly improves the cleanliness of the steel. Based on the high activity and high reducibility of “Hydrogen”, “Hydrogen” can effectively remove impurity elements such as O, C, N, S and P in steel, especially “Hydrogen” in plasma state, which can directly react with the impurity elements to generate H2O, CH4, NH3, H2S and PH3 and other gaseous products that are easy to be volatilized and removed, so as to avoid the formation of non-metallic inclusions, and to realize the highly efficient and high-cleanliness steelmaking with “zero inclusions”. Therefore, the development of a new generation of green, near-zero carbon, “zero inclusion” and pollution-free steelmaking process using “hydrogen” instead of “carbon” will accelerate the green, high-quality, and sustainable development of the steel industry.
References
Lu, L. J., Wang, F., Wang, H. F., Qiu, J., & Ping, X. D. (2024). J. Iron Steel Res, 36(2), 150-162
Tong, S., Ai, L. Q., Hong, L. G., Zhou, M. J., & Yuan, Y. P. (2023). Mater. Rep, 37(23), 117-124
Y, J., Xu, L., Liu, Z. P., & Chen, H. Z. (2022). China Metall, 32(4), 1-8
Wang, Z., Xiao, L. J., & Gan, Y. (2024). Mater. Rep, 38(03), 101-107
Li, X. (2022). China Plant Engineering, (4), 1
Yang, Z. W., Yu, J. B., Zhang, Y. F., Wang, J., & Ren, Z. M. (2023). China Metall, 33(12), 31-41
Lu, L. J., Wang, F., Wang, H. F., Qiu, J., & Ping, X. D. (2024). Iron & Steel, 59(03), 183-196
Zhang, S. C., Jiang, Z. H., Li, H. B., Zahng, W., Li, G. P., & Fan, G. W. (2019). J. Iron Steel Res, 31(2), 132-144
Okolie, J. A., Patra, B. R., Mukherjee, A., Nanda, S., Dalai, K., & Kozinski, A. (2021). Int. J. Hydrogen Energy, 46(13), 8885-8905
Liu, W., Zuo, H., Wang, J., Xue, Q. G., Ren, B. L., & Yang, F. (2021). Int. J. Hydrogen Energy, 46(17), 10548-10569
Zhao, Z. L. (2023). Sustainable Mining and Metallurgy, 39(5), 1-8
Yu, Y., Wang, F., Qi, Y. H., Zheng, A. J., & Li, Y. (2024). J. Iron Steel Res, 36(3), 283-298
Wu, G. Y., & Dai, Y. N. (1998). J. Kunming Univ. Sci. Technol., Sci. Technol, (3), 110-117+122
Zhang, Y. W., Ding, W. Z., Guo, S. Q., & Hu, X. K. (2004). Shanghai Met, (4), 17-20
Zarl, M. A., Farkas, M. A., & Schenk, J. (2020). Metals, 10(10), 1394
Ding, C.Y., Xue, S., Chang, R. D., Jiang, F., & Long, H. M. (2024). J. Iron Steel Res, 36(05), 568-579
Hu, M. L., Li, Z. X., Wei, J. G., Wei, X. G., & Wu, Z. H. (1985). Mater. Prot, (4), 2-5
Tang, H. Y., Liu, J. W., Wang, K. M., Xiao, H., & Li, Ai. W. (2021). Acta Metall. Sin, 57(10), 1229-1245
Zhang, H. S. (2010). PhD Thesis, Northeastern University
Ye, M. L. (2020). PhD Thesis, University of Science and Technology Beijing
Zhang, H. S., Zhan, D. P., Jiang, Z. H., Chen, Z. P., & Shen, H. J. (2009). Ind. Heat, 38(5), 10-13
Zhan, D. P., Zhang, H. S., Jiang, Z. H., Gong, W., Li, H. B., & Chen, Z. P. (2011). Adv. Mater. Res, 402, 142-146
Wan, T. J., Yuan, Z. F., Fan, Y. S., & Xin, C. (1991). Iron Steel Vanadium Titanium, (3), 75-79
Chen, K. Y., Chang, L. Z., & Wang, J. J. (2015). Wide and Heavy Plate, 21(5), 38-43
Li, J. S., Wang, C., Chen, Y. F., Yang, S. F., Liu, W., Bai, Y., Huang, Y. C., & Sun, Y. (2024). Special Steel, 45(1), 1-11
Mao, B., Tao, J. M., & Jiang, T. X. (2008). Continuous Casting, (5), 4-8
Liu, J. H., Pan, Y. K., He, Y., Zhang, J., Yan, B. J., & Deng, Z. Q. (2022). China, CN113337669B, 2022
Zheng, S. G., & Zhu, M. Y. (2008). Iron & Steel, (6), 25-29
Xue, Z. L., Wang, Y. F., Wang, L. T., Li, Z. B., & Zhang, J. W. (2003). Acta Metall. Sin, (4), 431-434
Liu, J. H., Zhang, J., & Li, K. W. (2017). Steelmaking, 33(2)(2017), 1-9+14
Li, K. W., Liu, J. H., Zhang, J., & Shen, S. B. (2017). Metall. Trans. B, 48(4), 2136-2146
Liu, J. H., Zhang, S., & He, Y. (2022). China, CN113621759B
He, Y., Xu, H., Liu, J. H., Zhang, J., Yan, B. J., & Deng, Z. Q. (2022). China, CN113373277B
He, Y., Liu, J. H., Zhang, J., Yan, B. J., & Deng, Z. Q. (2022). China, CN113355477B
Liu, J. H., Peng, H. B., He, Y., Yang, X. D., Xu, H., & You, D. L. (2022). Metals, 12(10), 1633
Xu, H., Liu, J. H., He, Y., & Liu, H. B. (2023). Clean Technol. Environ. Policy, 25(7), 2377-2391
Kumar, R., Saha, A. K., & Mandal, A. K. (2023). Can. Metall. Q, 62(2), 383-395
Kumar, R., Saha, A. K., Malik, K. N., & Mandal, A. K. (2023). JOM, 75(12), 5667-5675
Guo, X. L., Yu, J. B., Zhang, Y. J., Li, X., Wang, J., Liao, H. L., & Ren, Z. M. (2018). Metall. Trans. B, 49(6), 2951-2955
Guo, X. L., Yu, J. B., Zhang, Y. J., Liu, L., Liao, H. L., & Ren, Z. M. (2018). Int. J. Hydrogen Energy, 43(27), 12153-12157
Guo, X. L. (2019). PhD Thesis, Shanghai University
Mimura, K., Saito, K., & Isshiki, M. (1999). J. Jpn. Inst. Met, 63(9), 1811-1190
Jiang, Z. H., Zhu, H. C., Lu, H. B., Yao, C. L., Zheng, Y. J., Zhang, S. C., & Zheng, L. C. (2023). China, CN115679036A
Jiang, Z. H., Zhu, H. C., Lu, H. B., Yao, C. L., Zheng, Y. J., Zhang, S. C., & Zheng, L. C. (2024). China, CN115595401B
Xing, W., Ni, H. W., Zhang, H., & He, H. Y. (2009). The Chinese Journal of Process Engineering, 9(S1), 443-447
Makarov, M. A., & Aleksandrov, A. A. (2009). Russ. Metall, (2), 95-99
Cao, L., Zhu, L. G., Guo, Z. H., & Qiu, G. X. (2023). Ironmaking & Steelmaking, 50(4), 360-369
Liu, Y., Lu, Y. C., Wang, H. B., Zhu, Z. Y., Zhao, J., Wang, Z. M., Ma, C. W., Li, H. B., Wang, Y. L., Liu, B. S., Hao, N., Hu, X. T., Kuai, D. S., Xie, C. H., & Liu, G. L. (2022). China, CN114058785A
Xing, W., Ni, H. W., Zhang, H., He, H. Y., Cheng, R. J., & Xu, B. (2009). The Chinese Journal of Process Engineering, 9(S1), 234-237
Cao, L., Zhu, L. G., & Guo, Z. H. (2023). J. Iron Steel Res. Int, 30(1), 1-20
Liu, J. H., Zhang, J., He, Y., Ding, H., & Deng, Z. Q. (2018). China, CN106086315B
Liu, J. H., Zhang, S., He, Y., & Zhang, J. (2020). China, CN110592322B
Zhang, J., He, Y., Liu, J. H., Yan, B. J., Zhang, S., & Li, W. (2019). Vacuum, 168, 108803
Ren, Z. M., Li, X. F., Guo, X. L., Hou, Y., & Yu, J. B. (2019). China, CN105779699B
Zhang, J. (2020). PhD Thesis, University of Science and Technology Beijing
Chen, W., Wang, J. J., Chang, L. Z., Peng, C. S., & Meng, L. P. (2017). Continuous Casting, 42(2), 48-53
Meng, Y. Y., Wang, J. J., Zhou, L., Peng, C. S., & Meng, L. P. (2013). Chinese Society for Metals, Steelmaking Division, 406-412
Xing, W. (2009). PhD Thesis, Wuhan University of Science and Technology
Wang, H. J., Wang, J. J., Meng, Y. Y., Chang, L. Z., & Zhou, L. (2015). The Chinese Journal of Process Engineering, 37(3), 286-291
Xu, K. D. (2009). Acta Metall. Sin, 45(3), 257-269
Oh, J. M., Roh, K. M., & Lim, J. W. (2016). Int. J. Hydrogen Energy, 41(48), 23033-23041
Wang, C., Pan, G. P., Yang, C. Z., Zhang, J., & Zhao, P. (1997). Iron & Steel, (9), 21-24
Zhan, D. P., Zhang, H. S., Jiang, Z. H., Gong, W., & Chen, Z. P. (2011). Adv. Mater. Res, 239-242, 2361-2364
Wei, G. S., Li, X., Zhu, R., Xu, G. Y., Li, C., Chang, H., Feng, C., & Su, R. F. (2023). China, CN116356119B
Neuschütz, D., & Spirin, D. (2003). Steel Res. Int, 74(1), 19-25
Neuschütz, D., & Spirin, D. (2004). Chinese Society for Metals, German Iron and Steel Institute, 8
Zhao, B., Zhang, N., Peng, G. H., Wang, C. Y., Wu, W., & Wei, W. (2023). Special Steel, 44(2), 52-55
Dong, K., Wang, C. Y., Zhu, R., Liu, R. Z., Ren, X., & Liu, W. J. (2023). Iron & Steel, 58(8), 13-24
Zhang, X. Y., Jiao, K. X., Zhang, J. L., & Ziyu, G. (2021). J. Cleaner Prod, 306, 127259
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jiang ZhouHua , Yang Ce, Zhu HongChun, Lu HongBin

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright of the published papers and grant to the publisher the non-exclusive right to publish the article, to be cited as its original publisher in case of reuse, and to distribute it in all forms and media. Articles will be distributed under the Creative Commons Attribution 4.0 International (CC BY 4.0) licence.
Authors can enter the separate, additional contractual arrangements for non-exclusive distribution of the published paper (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.