Evaluating the structural state of fluoride-oxide melts and their interactions with steel to sensible selection of ESR slag
DOI:
https://doi.org/10.15802/tpm.4.2023.08Keywords:
slag, melt, chemical composition, viscosity, electrical conductivity, temperature, structure, electroslag remeltingAbstract
Purpose. Evaluation of the structural state of slag melts in the CaF2-Al2O3-CaO system with varying contents of SiO2 (1; 2.5; 4 wt.%) and MgO (3; 6; 12 wt.%), based on their viscosity and electrical conductivity data, for a sensible selection of the optimal chemical composition that will ensure the efficiency of the electroslag process. Methodology. Correlation-regression analysis of the relationships between the properties of electroslag remelting slags and their chemical composition and temperature; adaptive segmented linear regression examination of the graphical dependence of the logarithms of viscosity (η) and electrical conductivity (χ) on temperature (ln(η,χ) = f(1/T)); thermodynamic modelling of the equilibrium composition of metal-slag-gas system phases using HSC Chemistry 9 software. Scientific novelty. A new approach is employed to assess the temperature ranges of structural changes induced by alterations in the energy barrier (activation energy) associated with the formation or dissociation of compounds and interactions between different types of ions. The approach is based on the analysis of temperature dependences of structure-sensitive properties (viscosity (η) and electrical conductivity (χ)) using the adaptive segment regression method. Practical value. The dependencies of the temperatures of the structural state changes (T1 – derived from viscosity data, T2 – derived from electric conductivity) and the intervals between them (∆Т) on the chemical composition of the studies slags can be reliably represented by the parameter ρ – stoichiometry index (the ratio of cations (Ca2+, Mg2+, Si4+, Al3+, etc.) to anions (O-, S2-, F- etc.)). The slag composition (wt.%) СаF2 – 31, Al2O3– 31, CaO– 31, SiO2–4, MgO–3 provides suitably low values of phase transition temperatures Т1 = 1454К, Т2 = 1153К and a wide range between them ∆T = 301 K that make it is promising for energy effective ESR in short-collar mold with ingot withdrawing.
References
Medovar, L. B., Stovpchenko, A. P., Lisova, L. A., Dzhyanh, Dzh. (2012). Sovremennue trebovanyia k protsessam y shlakam elektroshlakovoho pereplava. Metallurhycheskaia i hornorudnaia promushlennost, (7), 297–301
Medovar, B. Y. et al. (1988) Elektroshlakovaia tyhelnaia plavka i razlyvka metalla [Paton B. E. (Ed.)]. Naukova Dumka
Stovpchenko, G. P., Lisova, L. O., Goncharov, I. O., & Gusiev, I. V. (2018). Physico-chemical properties of the ESR slags system CaF2-Al2O3-(MgO, TiO2). Journal of Achievements in Materials and Manufacturing Engineering, 89 (2), 64-72. https://doi.org/10.5604/01.3001.0012.7110
Guo, C., Shang, S., Du, Z., Jablonski, P. D., Gao, M. C., & Liu, Z.-K. (2015). Thermodynamic modeling of the CaO–CaF2–Al2O3 system aided by first-principles calculations. Calphad, 48, 113-122. https://doi.org/10.1016/j.calphad.2014.12.002
Ju, J., Gu, Y., Zhang, Q.,& He, K. (2023). Effect of CaF2 and CaO/Al2O3 ratio on evaporation and melting characteristics of low-fluoride CaF2–CaO–Al2O3–MgO–TiO2 slag for electroslag remelting. Ironmaking & Steelmaking, 50(1),13-20. https://doi.org/10.1080/03019233.2022.2079938
Hou, D., Pan, P., Wang, D., Hu, S., Wang, H., & Zhang, G. (2021). Study on the Melting Temperature of CaF2-CaO-MgO-Al2O3-TiO2 Slag under the Condition of a Fixed Ratio of Titanium and Aluminum in the Steel during the Electroslag Remelting Process. Materials, 14, 6047. https://doi.org/10.3390/ma14206047
Togobytska, N., Stepanenko, D., & Möhs, C. (2023). Adaptive segmented regression for the modeling of temperature-dependent material propertie. 22nd ECMI Conference on Industrial and Applied Mathematics. 23-30 June 2023 – Wroclaw, Poland, 327. https://ecmi2023.org/book-of-abstracts
Kwack, T., Um, H., & Chung, Y. )2023). Activation Energy of Alumina Dissolution in FeO-Bearing Slags. Metals, 13, 1702. https://doi.org/10.3390/met13101702
Yang, D., Zhou, H., Wang, J., et al. (2021). Influence of TiO2 on viscosity, phase composition and structure of chromium-containing high-titanium blast furnace slag. Journal of Materials Research and Technology, 12, 1615-1622. https://doi.org/10.1016/j.jmrt.2021.03.069
Li, T., Sun, C., Song, S., & Wang, Q. (2019). Influences of Al2O3 and TiO2 Content on Viscosity and Structure of CaO–8%MgO–Al2O3–SiO2–TiO2–5%FeO Blast Furnace Primary Slag. Metals, 9, 743. https://doi.org/10.3390/met9070743
Sajid, M., Bai, C., Aamir, M., et al. (2019). Understanding the Structure and Structural Effects on the Properties of Blast Furnace Slag (BFS), ISIJ International, 59(7), 1153-1166. https://doi.org/10.2355/isijinternational.ISIJINT-2018-453
Lisova, L. O., Stovpchenko, G. P., Goncharov, I. O. et al. (2020). Thermodynamics of interaction and physical properties of 30CaF2/30CaO/30Al2O3 system slags with addition of SiO2 and MgO in different ratios in electroslag remelting. Suchasna elektrometalurgiya, 1, 8-13. https://doi.org/10.37434/sem2020.01.01
Min, D. J., & Tsukihashi, F. (2017). Recent advances in understanding physical properties of metallurgical slags. Met. Mater. Int. 23, 1–19. https://doi.org/10.1007/s12540-017-6750-5
Stepanenko, D. A., Volkova, O., Heller, H. P. et al. (2017). Selecting optimal slag conditions in the blast furnace. Steel Transl., 47, 610–613. https://doi.org/10.3103/S0967091217090133
Stepanenko D. (2023). Calculation of activation energy of viscosity for evaluation of metallurgical slag melts structure. Lithuanian Journal of Physics, 63(1), 40-45. https://doi.org/10.3952/physics.2023.63.1.6
Stovpchenko, G., Togobitskaya. D., Lisova. L., Stepanenko. D., & Medovar. L. (2022). Predictive models for molten slags viscosity and electrical conductivity based on directed chemical bonds concept. Ironmak. Steelmak., 49(6), 572–580. https://doi.org/10.1080/03019233.2022.2026043
Zhang, L., Jiang, K., Xie, F., & Lu, D. (2023). Relation between Viscosity and Conductivity of CaO-MgO-FeO-Al2O3-SiO2 System for Copper Smelting Slags. Metals, 13, 786. https://doi.org/10.3390/met13040786
Frenkel ,Ya. Y. (1975). Kynetycheskaia teoryia zhydkostei. Nauka
Sukenaga, S., Gueguen, Y., Celarie, F., et al. (2024). Effect of calcium and potassium oxide addition on the viscosity and fragility of a calcium aluminosilicate melt. Journal of the American Ceramic Society, 107(6), 3822-3836. https://doi.org/10.1111/jace.19722
Hunt, A. G. (2000). Fragility of liquids using percolation-based transport theories: Correlation between limiting slope of the viscosity and non-exponentiality of relaxation. Journal of Non-Crystalline Solids, 274(1–3), 93-101. https://doi.org/10.1016/S0022-3093(00)00206-4
Nascimento, M. L. F., & Aparicio, C. (2007). Viscosity of strong and fragile glass-forming liquids investigated by means of principal component analysis. Journal of Physics and Chemistry of Solids, 68(1), 104-110. https://doi.org/10.1016/j.jpcs.2006.09.013
Prykhodko, E. V., Tohobytskaia, D. N., Khamkhotko, A. F., & Stepanenko, D. A. (2013). Prohnozyrovanye fyzyko-khymycheskykh svoistv oksydnuh system. Porohy
Stovpchenko, H. P., Davydchenko, S. V., Lisova, L. O., Husiev, Ya. V., & Medovar, L. B. (2020). Doslidzhennia tekhnolohichnosti ta efektyvnosti novoho shlaku dlia elektroshlakovoho pereplavu. Suchasna elektrometalurhiia, (3), 11-17. https://doi.org/10.37434/sem2020.03.01
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Stepanenko D.O., Stovpchenko G.P., Togobitskaya D.M., Lisova L.O.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright of the published papers and grant to the publisher the non-exclusive right to publish the article, to be cited as its original publisher in case of reuse, and to distribute it in all forms and media. Articles will be distributed under the Creative Commons Attribution 4.0 International (CC BY 4.0) licence.
Authors can enter the separate, additional contractual arrangements for non-exclusive distribution of the published paper (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.