Determination of the deformation of a rigid seeding surface under shock and vibration action

Authors

DOI:

https://doi.org/10.15802/tpm.2.2024.07

Keywords:

screening surface, shock and vibration influence, deformation, sieve stiffness, deformation characteristics

Abstract

For screening mining and metallurgical raw materials, especially in conditions where clogging of the screen holes can significantly reduce the process performance, an urgent task is the need to improve the efficiency of classification. The aim of this work is to determine the deformation of a rigid screening surface under the influence of shock and vibration. In this work, a calculation scheme and an algorithm for determining the deformation of the sieve. The sieving surface was represented as a system of elementary beam strips that undergo deformation in both the longitudinal and and transverse directions under the influence of shock and vibration. Elasticity theory was used to analyze the deformations, as well as numerical modeling to calculate the stiffness of the sieve and determine its deformation characteristics. The results of the study showed that the deformation of the sieve depends on vibration angles and relative elongation of the sieving surface elements. It was found that at small relative elongations (up to 0.001), the displacement of the of the deflection boom in the longitudinal direction is insignificant and does not affect sieve performance. Significant deformations that may affect its operation occur only at large relative elongations, which are unacceptable in production conditions. The developed calculation scheme allows for a more accurate assessment of the deformation properties of the sieve and can be used to optimize its design. The proposed methods can be implemented in production processes, which will optimize the processes, which will optimize the operation of technological units and reduce the cost of their operation.

References

Tovarovskiy, I. G. (2014). Normativnaia otsenka vliianiia parametrov domennoi plavki na raskhod koksa i proizvoditelnost. Fundamental and applied problems of ferrous metallurgy, 28, 117-131

Zhuravlev, F. M. et al. (2020). Teoriia i tekhnologiia podgotovki shikhtovykh materialov dlia domennoi i bezdomennoi metallurgii zheleza. Cherniavskii D. A.

Nadutyi, V. P., Goldin, A. A., & Pogrebizhenskii, G. A. (1991). Ispolzovanie rezoniruiushchikh lentochno-strunnykh sit v konstruktsiiakh vibratsionnykh grokhotov. Koks i khimiia, (8), 27-28

Chervonenko, A. G., & Morus, V. L. (1997). Iznosostoikie dinamicheski aktivnye proseivaiushchie poverkhnosti iz elastomerov dlia razdeleniia sypuchikh materialov i pulp. In Trudy II Mezhdunarodnogo simpoziuma po mekhanike elastomerov. Vol. 1, pp. 296-310

Bulat, A. F., Shevchenko, H. O., & Shevchenko, V. H. (2009). Pryvid polichastotnoho hrokhota. (Patent No. 45544). Ukrpatent. https://sis.nipo.gov.ua/uk/search/detail/265793/

Shevchenko, G. A., & Shevchenko, V. G. (2015). Model vibratsionnogo polichastotnogo grokhota s ogranichennym istochnikom vozbuzhdeniia. Vibratsii v tekhnitsi ta tekhnologiiakh, (4(80)), 105-112

Shevchenko, V. H., & Shevchenko, H. O. (2017). Shchodo vykorystannia zhyvylnykiv z vibroudarnym pryvodom dlia pidvyshchennia produktyvnosti ta bezpeky vypusku uranovykh rud. Geo-technical Mechanics, (135), 32-45

Shevchenko, H., Sushchenko, O., & Zozulia, H. (2019). Oscillation modes of vibrating feeders with vibro-impact adaptive drive at the output of reflacted ore from chambers of wining blocks. E3S Web of Conferences, 109, 00087. https://doi.org/10.1051/e3sconf/201910900087

Shevchenko, H., Shevchenko, V., & Pukhalskyi, V. (2019). Vibrational feeders with vibro-impact adaptive drive. E3S Web of Conferences, 109,00085. https://doi.org/10.1051/e3sconf/201910900085

Bulat, A. F., & Shevchenko, G. A. (2010). Vliianie polichastotnykh kolebanii proseivaiushchikh poverkhnostei vibratsionnykh grokhotov na razdelenie sypuchikh materialov. Naukoviy visnik NGU, (4), 92-97

Shevchenko, V. H. et al. (2017). Polichastotni hrokhoty dlia tonkoi klasyfikatsii i znevodnennia podribnenykh uranovykh rud ta vidkhodiv yikh pererobky. Geo-technical Mechanics, (137), 80-92

Shevchenko, G. A., Shevchenko, V. G., & Bobylev, A. A. (2013). Vibratsionnye grokhoty s polichastotnymi kolebaniiami proseivaiushchikh poverkhnostei dlia tonkogo razdeleniia. Ugol Ukrainy, 1(2), 23-29

Mnogochastotnye grokhoty v reshenii otraslevykh problem klassi-fikatsii syr'evykh materialov: kat. obladannya. IL Ashdod: Kroosh technologies, 2011. 10 s.

Krush I., Borokhovich D., & Kosoi G. (2009). Primenenie tekhnologii kroosh® dlia protsessov razdeleniia sypuchikh materia-lov i polidispersnykh suspenzii. Obogashchenie poleznykh iskopaemykh, (14), 171-183

Tekhnologiya Kroosh. Multifrequencyequipment. Kroosh Tecnologies Ltd. http://kroosh.com/ru/tehnologiya

Berheman, H. V.,Pelykh, I. V., Ivaschenko, V. P., Uchytel O. D., Petrenko, V. O., Onatskyi S. M., & Shybko, O. V. (2008). Kolosnykove syto (Patent 90387). Ukrpatent. https://sis.nipo.gov.ua/uk/search/detail/442895/

Popolov, D. et al. (2019). Studying of movement kinematics of dynamically active sieve. Mechanics and Mechanical Engineering, 23(1), 94-97. https://doi.org/10.2478/mme-2019-0013.

Uchytel, O. D., Zaselskyi, V. Y., Popolov, D. V. (2018). Vibratsiinyi hrokhot (Patent 122940). Ukrpatent. https://sis.nipo.gov.ua/uk/search/detail/690302/

Published

2024-05-21

How to Cite

Zaselskyi , V., & Popolov , D. (2024). Determination of the deformation of a rigid seeding surface under shock and vibration action. Theory and Practice of Metallurgy, (2), 45–51. https://doi.org/10.15802/tpm.2.2024.07

Issue

Section

Articles