Regulation of carbon and phosphorus content in manganese alloys when processed in an oxidizing gas environment or oxide system

Authors

DOI:

https://doi.org/10.15802/tpm.3.2024.11

Keywords:

manganese alloys, dephosphorization, decarburization, oxidant, rolling scale, ferromanganese, phosphorus oxidation, slag phase, silicon oxidation

Abstract

Purpose: Determination of rational methods for reducing the carbon and phosphorus content in manganese alloys. Research methodology: Thermodynamic calculations and experimental studies of decarbonization and dephosphorization of a high-phosphorus manganese alloy. Research materials: As a high-carbon ferromanganese with a high phosphorus content, a related metal (manganese alloy) obtained during the production of low-phosphorus slag at the Nikopol Ferroalloy Plant was used. Rolling scale was used as an oxidant, with a composition of FeO - 59.5 wt. %; Fe3O4 - 38.9 wt. %. Research results: The features of dephosphorization of manganese alloys are considered. According to the adopted "classical" technology, a useful product of dephosphorization of manganese concentrates is manganese slag with a low phosphorus content. Oxidation of phosphorus dissolved in the metal can occur as a result of its interaction with oxygen in the gas phase. The higher the basicity of the manganese slag, the greater the probability of phosphorus oxidation. Given the basicity of the slag, the higher the FeO content in it, the better the conditions for removing phosphorus from the metal. The process of dephosphorization of the associated metal includes the oxidation of phosphorus, the binding of phosphorus oxide into strong compounds (phosphates) and their transition to the slag phase. Scientific novelty: The associated metal includes silicon, which has a much higher affinity for oxygen than phosphorus; then, naturally, it will first be oxidized with the formation of silicon oxide with a melting point much higher than the temperature of experimental studies. Practical significance: The results obtained show that when oxidizing the associated metal with iron scale at a specific consumption of 114 kg/t of metal, the total degree of silicon extraction was 88.16%, phosphorus - 71.03%. At the same time, the manganese content in the metal decreased by 6.48% due to the recovery of rolling scale.

References

de Castro, D. B. V., Ventura, J. M., Ruckert, C. O. F. T., Spinelli, D., & Bose Filho, W. W. (2010). Influence of phosphorus content and quenching/tempering temperatures on fracture toughness and fatigue life of SAE 5160 steel. Mater. Res. 13(4), 445–455. https://doi.org/10.1590/S1516-14392010000400005

Seah, M. P. (1980). Impurities, segregation and creep embrittlement. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 295(1413), 265–278, https://doi.org/10.1098/rsta.1980.0106

Velichko, B. F., Gavrilov, V. O., Gasik, M. I. et al. (1996). Metallurgiia margantsa Ukrainy. Tekhnika

Kaczorowski, J., Lindstad, T., & Syvertsen, M. (2007). The Influence of Potassium on the Boudouard Reaction in Manganese Production. ISIJ international, 47(11), 1599–1604. https://doi.org/10.2355/isijinternational.47.1599

Sadovskii, N. G., Strigachev, E. M., & Gasik, M. I. (1978). Issledovanie vliianiia Na2O, K2O, MgO i Al2O3 na viazkost i plavkost besfosforistogo margantsevogo shlaka. Metallurgiia i koksokhimiia, (56), 41-45

Kucher, A. G., Kamkina, L. V., Ankudinov, R. V., & Galaganov, A. I. (1986). Nekotorye osobennosti protsessa obesfosforivaniia karbonatnykh margantsevykh rud. Metallurgiia i koksokhimiia. Elektrometallurgiia stali i ferrosplavov, (90), 56-61

Mironenko, P. F., Gantserovskii, O. G., Ovcharuk, A. N., & Rogachev, I. P. (1989). Tekhnologicheskie osobennosti vyplavki i puti uluchsheniia kachestva malofosforistogo shlaka. Metallurgiia i koksokhimiia, (99), 61-65

Ni, R., Cheng, W., Ma, Z., & Wei, S. (1994). Dephosphorization of silico-manganese alloys under reducing atmosphere with metallic calcium. Journal: Steel Research, 65(1), 15-20. https://doi.org/10.1002/srin.199400920

Han, P.-W., Zhang, G.-H., & Chu, S.-J. (2016). Thermodynamic Assessment of Liquid Mn–Fe–Si–C–Ca–P System by Unified Interaction Parameter Model. ISIJ International, 56(6), 917-925. https://doi.org/10.2355/isijinternational.ISIJINT-2015-545

Ma, Z., Ni, R., Zheng, C., & Wang, J. (1992). Dephosphorization of Mn-based alloys. Steel Research. Process metallurgy, 63(3),112-119. https://doi.org/10.1002/srin.199200480

Chen, G., & He, S. (2014). Thermodynamic analysis and experimental study of manganese ore alloy and dephosphorization in converter steelmaking. J. S. Afr. Inst. Min. Metall, 114(5), 391-399. https://scielo.org.za/scielo.php?pid=S2225-62532014000500008&script=sci_abstract

Maphutha, M. P., Steenkamp, J. D., & Pistorius, P. C. (2021). Investigation into the dephosphorization of ferromanganese alloys for the production of advanced high-strength steel. Journal of the Southern African Institute of Mining and Metallurgy, 121(9), 487–496. http://dx.doi.org/10.17159/2411-9717/1510/2021

Xi, X., Luo, D., Cai, X., & Lai, C. (2018). Dephosphorisation of ferromanganese alloy using rare earth oxide-containing slags. Canadian Metallurgical Quarterly, 57(4), 493-500. https://doi.org/10.1080/00084433.2018.1501142

Roy, G. G., Chaudhary, P. N., Minj, R., & Goel R. P. (2001). Dephosphorization of ferromanganese using BaCO3-based fluxes by submerged injection of powders: A preliminary kinetic study. Metallurgical and Materials Transactions B, 32(3), 558-561. https://doi.org/10.1007/s11663-001-0041-7

Sun, H., Yang, J., Yang, W. K. et al. (2023). Comprehensive Evaluation of Phosphorus Enrichment Capacity for Decarburization Slag at Different Temperatures Based on Industrial Experiments, Mineral Phase Analysis and Ion–Molecule Coexistence Theory. Metall Mater Trans B, 54, 115–145. https://doi.org/10.1007/s11663-022-02674-4

Randhawa, N. S., Minj, R. K., &Kumar, K. (2024). Cleaner Eco-friendly low-carbon manganese ferroalloy production for cleaner steel technologies. Engineering and Technology, 21, 100784. https://doi.org/10.1016/j.clet.2024.100784

Velichko, O., Myanovska, Ya., Karbovnichek, M., Du Yunshen, Mishalkin, A., & Kamkina, L. (2019). Refining of manganese alloys with high content of phosphorus obtained in electrometallurgical dephosphoration of manganese ores. Theory and practice of metallurgy, (5), 19-30

Ding, H., Jin, Y., Tian, Z. B., & Wu, D. J. (2011). Thermodynamics Analysis of Hot Metal Dephosphorization Flux Reaction Process. Advanced Materials Research, 402, 354-357. https://doi.org/10.4028/www.scientific.net/AMR.402.354

Chaudhary, P. N., Goel, R. P., Roy, G. G. (2001). Dephosphorisation of high carbon ferromanganese using BaCO3 based fluxes. Ironmaking & Steelmaking, 28(5), 396-403. https://doi.org/10.1179/irs.2001.28.5.396

Büyükuslu, Ö. K., Aota, L. S., Raabe, D., Springer, H., & Filho, I. R. S. (2024). Mechanisms and elemental partitioning during simultaneous dephosphorization and reduction of Fe-O-P melts by hydrogen plasma. Acta Materialia, 277, 120221. https://doi.org/10.1016/j.actamat.2024.120221

Randhawa, N. S., & Minj, R. K. (2020). An Improved Process for the Production of Low-Carbon Ferromanganese in the Electric Arc Furnace. Trans Indian Inst Met, 73, 2105–2111. https://doi.org/10.1007/s12666-020-02010-x

Shin, D. J., Gao, X., Ueda, S. et al. (2019). Selective Reduction of Phosphorus from Manganese Ore to Produce Ferromanganese Alloy with Low Phosphorus Content. J. Sustain. Metall., 5, 362–377. https://doi.org/10.1007/s40831-019-00227-9

You, B.‐d., Han, J.‐w., & Pak, J.-J. (2000). Decarburization of high carbon ferromanganese melts. Steel research, 71(1-2), 22-26. https://doi.org/10.1002/srin.200005685

Velychko, O., Du Yunshen, Mianovska, Y., Kamkina, L., & Ankudinov, R. (2020). Physical and chemical bases of decarburization of high-carbon ferromanganese melt. Theory and practice of metallurgy, (1), 30-35. https://doi.org/10.34185/tpm.1.2020.04

Published

2024-08-21

How to Cite

Velychko , K., Mianovska , Y., & Kamkina , L. (2024). Regulation of carbon and phosphorus content in manganese alloys when processed in an oxidizing gas environment or oxide system. Theory and Practice of Metallurgy, (3), 78–82. https://doi.org/10.15802/tpm.3.2024.11

Issue

Section

Articles