

ISSN 3083-7219 (Print)
ISSN 3083-7227 (Online)

№4
(149)
2025

ТЕОРІЯ
І ПРАКТИКА
МЕТАЛУРГІЇ

THEORY
AND PRACTICE
OF METALLURGY

ТЕОРІЯ І ПРАКТИКА МЕТАЛУРГІЇ

№4
(149)
2025

НАУКОВО-ВИРОБНИЧИЙ ЖУРНАЛ

Видається з березня 1997 року
Виходить 4 рази на рік

Засновники: Український державний університет науки і технологій
Відділення матеріалознавства та металургії
Академії інженерних наук України

Видавець: Український державний університет науки і технологій

Дніпро
2025

THEORY AND PRACTICE OF METALLURGY

No. 4
(149)
2025

SCIENTIFIC AND PRODUCTION JOURNAL

Issued since March 1997
Released 4 times a year

Founders: Ukrainian State University of Science and Technologies
Department of Materials Science and Metallurgy
Of the Academy of Engineering Sciences of Ukraine

Publisher: Ukrainian State University of Science and Technologies

Dnipro
2025

УДК 669:620.2:621

Журнал зареєстровано в Національній раді України з питань телебачення і радіомовлення як друковане медіа. Рішення № 924 від 28.09.2023. Ідентифікатор медіа: R30-01392.

Наказом Міністерства освіти і науки України №157 від 09.02.2021 р. журнал включено до категорії «Б» переліку наукових фахових видань України за спеціальностями:

- 133 – Галузеве машинобудування;
- 136 – Металургія;
- 161 – Хімічні технології

РЕДАКЦІЙНА КОЛЕГІЯ

Головний редактор – Пройдак Ю.С., д.т.н., проф., Український державний університет науки і технологій, Україна

Заступник головного редактора – Камкіна Л.В., д.т.н., проф., Український державний університет науки і технологій, Україна

Баюл К.В., д.т.н., проф., Інститут чорної металургії ім. З. І. Некрасова НАН України, Україна

Білодіденко С.В., д.т.н., проф., Український державний університет науки і технологій, Україна

Єрьомін О.О., д.т.н., проф., Український державний університет науки і технологій, Україна

Зайчук О.В., д.т.н., проф., Український державний університет науки і технологій, Україна

Засельський В.Й., д.т.н., проф., Державний університет економіки і технологій, Україна

Малий Є.І., д.т.н., проф., Український державний університет науки і технологій, Україна

Сухий К.М., чл.-кор. НАН України, д.т.н., проф., Український державний університет науки і технологій, Україна

Сігарьов Є.М., д.т.н., проф., Дніпровський державний технічний університет, Україна

ZhouHua J., Doctor of Technical Sciences, Professor, School of Metallurgy, Northeastern University, Liaoning, China

Karbowniczek M., Professor, Dept. of Metal Engineering and Industrial Computer Science, AGH University of Science & Technology, Krakow, Poland

Gasik M.M., Doctor of Technical Sciences, Professor, Aalto University Foundation, Espoo, Finland

Sladkovskiy A.V., Doctor of Technical Sciences, Professor, Poland

Stovpchenko G.P., Doctor of Technical Sciences, Professor, Tianjin Heavy Industry research and Development Co, Ltd, Tianjin, China

Medovar L.B., Doctor of Technical Sciences, Professor, Tianjin Heavy Industry research and Development Co, Ltd, Tianjin, China

Lezhnev S.N., Doctor of Technical Sciences, Professor, Rudny Industrial Institute, Rudny, Kazakhstan

Volkova O., Technische Universität Bergakademie Freiberg, Freiberg, Germany

Матеріали публікуються мовою оригіналу та ліцензуються відповідно до [Creative Commons Attribution 4.0 International \(CC BY 4.0\)](https://creativecommons.org/licenses/by/4.0/).

Автори зберігають авторські права на опубліковані статті та надають видавцеві невиключне право на публікацію статті з посиланням на нього, як на оригінального видавця, у разі повторного використання, а також на розповсюдження статті у будь-якій формі та на будь-яких носіях.

Автори можуть укладати окремі додаткові договори про невиключне поширення опублікованої статті (наприклад, розміщення її в інституційному репозитарії або публікація в книзі) із зазначенням її первинної публікації в цьому журналі з обов'язковим зазначенням джерела статті.

UDC 669:620.2:621

The Journal is registered as a print media outlet by the National Council of Television and Radio Broadcasting of Ukraine. Decision No. 924, dated September 28, 2023. Media Identifier: R30-01392.

By the order of the Ministry of Education and Science of Ukraine No. 157 from 09.02.2021 p. the journal is included in category "B" of the list of scientific professional publications of Ukraine, by specialties:

- 133 - Industry engineering;
- 136 - Metallurgy;
- 161 - Chemical technologies

EDITORIAL BOARD

Editor in Chief – Proidak Yu.S., D. Sc. (Tech.), Professor, Ukrainian State University of Science and Technologies, Ukraine

Deputy Editor-in-Chief – Kamkina L.V., D. Sc. (Tech.), Professor, Ukrainian State University of Science and Technologies, Ukraine

Baiul K.V., D. Sc. (Tech.), Professor, Iron and Steel Institute of Z. I. Nekrasov National Academy of Sciences of Ukraine, Ukraine

Bilodidenko S.V., D. Sc. (Tech.), Professor, Ukrainian State University of Science and Technologies, Ukraine

Yeromin O.O., D. Sc. (Tech.), Professor, Ukrainian State University of Science and Technologies, Ukraine

Zaichuk O.V., D. Sc. (Tech.), Professor, Ukrainian State University of Science and Technologies, Ukraine

Zaselskyi V.Y., D. Sc. (Tech.), Professor, State University of Economics and Technologies, Ukraine

Malyi E.I., D. Sc. (Tech.), Professor, Ukrainian State University of Science and Technologies, Ukraine

Sukhyy K.M., Corresponding Member of the National Academy of Sciences of Ukraine, D. Sc. (Tech.), Professor, Ukrainian State University of Science and Technologies, Ukraine

Siharov Ye.M., D. Sc. (Tech.), Professor, Dniprovskyi State Technical University, Ukraine

ZhouHua J., Doctor of Technical Sciences, Professor, School of Metallurgy, Northeastern University, Liaoning, China

Karbowniczek M., Professor, Dept. of Metal Engineering and Industrial Computer Science, AGH University of Science & Technology, Krakow, Poland

Gasik M.M., Doctor of Technical Sciences, Professor, Aalto University Foundation, Espoo, Finland

Sladkovskiy A.V., Doctor of Technical Sciences, Professor, Poland

Stovpchenko G.P., Doctor of Technical Sciences, Professor, Tianjin Heavy Industry research and Development Co, Ltd, Tianjin, China

Medovar L.B., Doctor of Technical Sciences, Professor, Tianjin Heavy Industry research and Development Co, Ltd, Tianjin, China

Lezhnev S.N., Doctor of Technical Sciences, Professor, Rudny Industrial Institute, Rudny, Kazakhstan

Volkova O., Technische Universität Bergakademie Freiberg, Freiberg, Germany

Articles are published in their original language and licensed under [Creative Commons Attribution 4.0 International \(CC BY 4.0\)](https://creativecommons.org/licenses/by/4.0/).

Authors retain copyright of the published papers and grant to the publisher the non-exclusive right to publish the article, to be cited as its original publisher in case of reuse, and to distribute it in all forms and media.

Authors can enter the separate, additional contractual arrangements for non-exclusive distribution of the published paper (e.g., post it to an institutional repository or publish it in a book), with an indication of its primary publication in this journal and the mandatory indication of the article's doi.

Мироненко М.А.
Професори Андрій Павлович Виноградов
та Павло Терентійович Ємельяненко та їхня роль
у становленні та розвиткові вищої технічної освіти
на Придніпров'ї

Український державний університет науки і технологій, м. Дніпро, Україна

Myronenko M.A.
Professors Andriy Pavlovich Vinogradov
and Pavlo Terentiiovich Yemelyanenko
and their role in the establishment and development
of higher technical education in the Dnipro region

Ukrainian State University of Science and Technologies, Dnipro, Ukraine

Анотація. Становлення та розвиток вищої технічної освіти на Придніпров'ї – багатоаспектне явище у якому мають значення як об'єктивні та і суб'єктивні чинники. Безумовно, важливою є роль суспільно-політичних процесів та ухвалених рішень державних органів. Але не менший вплив на перебіг подій має і особистість вченого, який працює у науковій чи освітній установі. Про двох таких вчених-ювілярів 2025 року Андрія Павловича Виноградова та Павла Терентійовича Ємельяненка подано матеріал у пропонованій широкому загалу статті.

Ключові слова: вища освіта, металургія, вчені, розвиток, біографія.

Abstract. The establishment and development of higher technical education in the Dnipro region is a multifaceted phenomenon in which both objective and subjective factors are important. Undoubtedly, the role of socio-political processes and decisions made by state bodies is significant. However, the personality of a scientist working in a scientific or educational institution has no less influence on the course of events. This article, intended for a wide audience, presents information about two such scientists celebrating their anniversaries in 2025: Andrii Pavlovych Vinogradov and Pavlo Terentiiovich Yemelianenko.

Keywords: higher education, metallurgy, scientists, development, biography.

Становлення та розвиток вищої технічної освіти на Придніпров'ї – багатоаспектне явище у якому мають значення як об'єктивні та і суб'єктивні чинники. Безумовно, важливою є роль суспільно-політичних процесів та ухвалених рішень державних органів. Але не менший вплив на перебіг подій має і особистість вченого, який працює у науковій чи освітній установі.

Кінець XIX століття примітний для нашого краю активним розвитком промислового виробництва, яке своєю чергою вимагало залучення місцевих висококваліфікованих працівників. Підготовку таких фахівців мали здійснювати профільні освітні установи з відповідним кадровим складом. Така вервичка подій спричинила появу на науковому обрії цілої низки постатей, непересічних особистостей, які започаткували розвиток наукових шкіл у галузі металургії. Про двох таких вчених-ювілярів 2025 року Андрія Павловича Виноградова та Павла Терентійовича Ємельяненка подано матеріал у

пропонованій широкому загалу статті.

У жовтні 2025 року виповнилося 150 років від дня народження видатного вченого та організатора вищої технічної освіти на Придніпров'ї, доктора технічних наук, професора Андрія Павловича Виноградова (1875 - 1933). У статті нами буде розглянуто основні етапи біографії вченого-металурга та його вплив на розвиток вищої школи на теренах Придніпровського краю.

Народився майбутній вчений 2 жовтня (14 за нов.ст.) 1875 р. в старовинному місті Сузdal' в багатодітній родині чиновника. Батько Андрія Виноградова був секретарем земської управи і відійшов у вічність, коли хлопчаків виповнилося лише вісім років [1].

Після успішного закінчення початкового училища і гімназії в м. Шуя, майбутній вчений був відправлений для проходження військової повинності в Шуйському повіті Володимирського намісництва у 1897 році та під час проходження військово-

лікарської комісії був визнаним повністю непридатним до неї та звільнений назавжди від військової служби. Це засвідчує запис у «Формулярному спискові про службу» (далі – «Формуляр»), який авторові статті пощастило дослідити у фондах народного музею історії ДМетІ у липні 2023 року. Цей вельми пізнавальний документ було укладено у травні 1918 року й у ньому позначено, що гірничий інженер Андрій Павлович Виноградов на той час обіймав посаду доцента по кафедрі металургії Катеринославського гірничого інституту (КГІ).

Тепер, спираючись на вказане документальне джерело, відтворимо події життя вченого, починаючи від 1899 року. Цю дату обрано невипадково, адже саме 4 червня (за ст.ст.) 1899 року у Петергофі, заміській резиденції царя Миколи II було остаточно визначено щодо започаткування у Катеринославі вищого гірничого училища (КВГУ) – першого закладу вищої технічної освіти на наших теренах.

Невеличкий історичний відступ від основного тексту, який багато чого пояснює щодо питання організації навчального процесу в вищому навчальному закладі у XIX ст. Вступні іспити до нового навчального закладу проводили члени приймальної комісії, відібрани з числа викладачів місцевої гімназії та реального училища. Екзаменаційна сесія розпочалась 15 вересня і до неї було допущено 177 чоловіків із числа 352 осіб, що подали заяви. Для навчання було зараховано лише 77 чоловіків. Серед щасливих першокурсників був і студент Андрій Виноградов [2].

Власне відкриття КВГУ відбулось 30 вересня (13 жовтня за н.ст.) 1899 р. Для занять були виділені кімнати у приміщенні Потьомкінського палацу, а в самому навчальному закладі заняття відбувались за кабінетною системою, адже у перші роки кафедр не було створено, а існували лише два відділення – гірниче та заводське. Керівником останнього було призначено на початку 1900 року талановитого інженера-металурга і педагога, випускника Петербурзького гірничого інституту Михайла Олександровича Павлова – у майбутньому видатного вченого-металурга і академіка [2].

У 1903 році відбувся перший випуск. Завершили КВГУ 16 чоловіків – 8 отримали дипломи гірничих інженерів, а інші 8 – інженерів-металургів. Серед останніх восьми був і А.П. Виноградов (дипл. № 6990 від 13 листоп. 1903 р.), який під час навчання виявив неабиякий талант до наукової праці та був рекомендований до залишення на роботу до кабінету металургії [2].

У «Формулярі» жодним чином не пояснюється, яким чином підліток із Володимирського намісництва опиняється на берегах повноводного Дніпра. Відповідь знаходимо у статті [1]. Як стверджує її автор, у 1897 році Андрій Виноградов стає студентом медичного факультету Московського університету. Від самого початку молодий чоловік поринає у вир студентського життя, однією зі складових якого були різноманітні заворушення й відстоювання

прав і свобод людини і громадянина.

Після одного з таких студентських страйків А. Виноградова у 1899 році розпорядженням Московського генерал-губернатора було відраховано з другого курсу і вислано із Москви «без права проживання в університетських містах, а також у містах з вищими навчальними закладами» [1].

Саме завдяки такій примісі долі двадцятичотирічний молодий чоловік став студентом у Катеринославі, адже на момент його заслання у місті не було вищого навчального закладу.

Та повернімося до змісту «Формуляра». Молодий гірничий інженер Андрій Виноградов не поспішає відгукуватися на заманливу пропозицію викладачів училища щодо роботи лаборантом при кабінеті металургії під керівництвом П.Г. Рубіна [4], а вирішує набути практичного досвіду, працюючи на заводах у містах Верхньодніпровську та Петрозаводську (1904 – 1907 рр.).

Із 1 серпня 1907 року А.П. Виноградова було запрошено до КВГУ на посаду асистента кафедри металургії. Молодий чоловік погоджується, адже в його особистому житті також відбулись чималі зміни.

Як випливає з інформації у «Формулярі» 8 січня 1903 року ще студент Андрій Виноградов одружився з донькою протоієрея Анною Федорівною Лебедєвою, яка народилась 25 січня 1878 року. В щасливому шлюбі у молодят народилося троє дітей – старший син Федір народився 1 вересня 1904 року; донька Олександра народилась 11 липня 1906 року та молодший син Гліб, який народився 2 травня 1908 року. [2]

У професійному житті вченого відбувалось кар'єрне зростання. Із перетворенням КВГУ в 1912 році на гірничий інститут А.П. Виноградов отримує підвищення та обіймає посаду старшого лаборанта кафедри металургії (рис. 1). Як талановитому вченому йому було надано право на відрядження у складі делегації на з'їзд діячів гірничої, металургійної та машинобудівної справи, який відбувався у Санкт-Петербурзі з 21 грудня 1912 по 7 січня 1913 року.

Від 1 січня 1913 року А.П. Виноградова було призначено на посаду в.о. доцента кафедри металургії КГІ. Нова посада передбачала відрядження на літні місяці на підприємства Поволжя та Уралу на яких виготовляють мідь.

Під час зборів працівників гірничого факультету КГІ 22 листопада 1917 року А.П. Виноградова обрали на посаду доцента кафедри металургії. Того ж року вченим було прочитано лекцію «Про прокатку», друкований примірник якої зберігається у бібліотеці ДМетІ і налічує 29 сторінок тексту, а також вкладки з епюрами, графіками та планами прокатних цехів (рис. 2).

Наполеглива праця вченого двічі у цей період була відзначена урядовими нагородами: у 1908 році орденом Святого Станіслава III-го ступеня та орденом Святої Анни III-го ступеня у 1915 році.

А.П. Виноградов, 1912 р.

Рис. 1 А.П. Виноградов – працівник кафедри металургії КГІ, 1912 р.

У 1919 році А.П. Виноградов захищає дисертацію на тему «М'який булат та походження булатного візерунку» й отримує вчене звання ад'юнкта металургії та призначається на посаду професора.

У 1920 році професора Виноградова Наркоматом просвіти було призначено на посаду заступника директора Катеринославського гірничого інституту з навчальної роботи. Починається насичений повсякденними важливими педагогічними та науковими справами етап в житті вченого. Від липня 1921 року А.П. Виноградов керує створеною ним же кафедрою механіко-термічної обробки металів. При цьому було створено першу в Україні металографічну лабораторію, а задачі термомеханічної обробки прокату стали надзваданням для металургійної науки й дотеперішнього часу.

Крім того, професор Виноградов виявляє себе талановитим лектором та невтомним пошукувачем талантів серед обдарованої студентської молоді. У 1920-х він очолює металургійну предметну комісію, читає лекції з курсу прокатного виробництва, керує процесом дипломного проєктування у вечірніх робітничих технікумах при Брянському та Дніпровському металургійних заводах. Невтомно читає лекції на курсах підвищення кваліфікації інженерів та техніків. Саме професора Виноградова можна по праву вважати тією людиною, яка відкрила світ науки для студентів Олександра Чекмарьова, Кирила Стародубова та Павла Ємельяненка. Згодом ці молоді люди перевершили своїми досягненнями

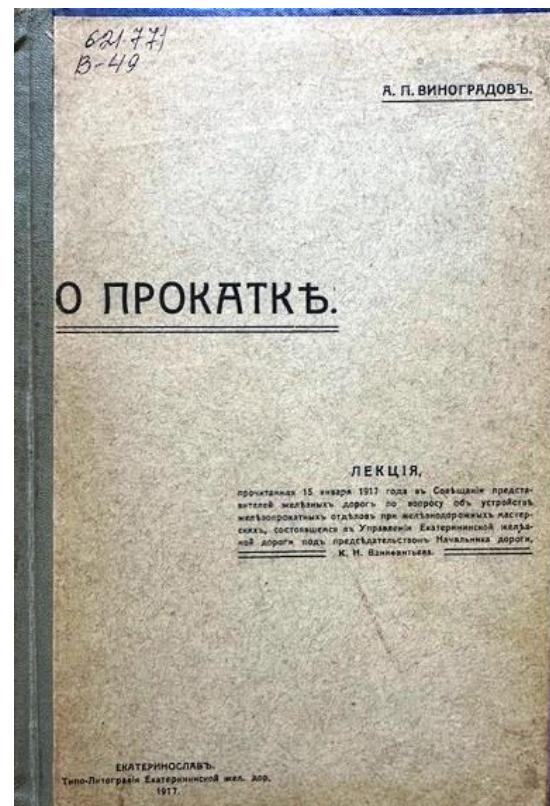


Рис. 2 Титульна сторінка лекції А.П. Виноградова «Про прокатку», 1917 р.

вчителя.

Професор Виноградов 1925 року виїздив у наукове відрядження до Німеччини – знайомився на металургійних заводах з досвідом роботи інженерів та колег вчених. Ця поїздка за декілька років виявиться для нього фатальною.

У серпні 1927 року А.П. Виноградова призначають уповноваженим Головнауки Народного комісаріату просвіти.

У 1928 році під егідою проф. Виноградова вийшов друком «Вісник науково-технічного студентського гуртка» – предтеча створеного ним же роком пізніше журналу «ДоМeЗ» (рис. 3), який уже 1930-го року викликав шквал критики ленінградських та московських вчених через свою надмірну популярність серед читачів. Виявилось, що тираж цього посвіті місцевого видання перевищував наклади багатьох аналогічних столичних видань, причому разом узятих.

При утворенні навесні 1930 року Дніпропетровського металургійного інституту професор Виноградов був призначений завідувачем заснованої ним новоствореної кафедри прокатного виробництва та металографії.

На початку 1931 року був заарештований НКВС із звинуваченням як «німецький шпигун». У застінках НКВС зазнав важких моральних та фізичних тортуру. Звинувачення повністю відкинув, своєї вини не визнав і був звільнений. Професора А.П. Виноградова було реабілітовано у 1993 році.

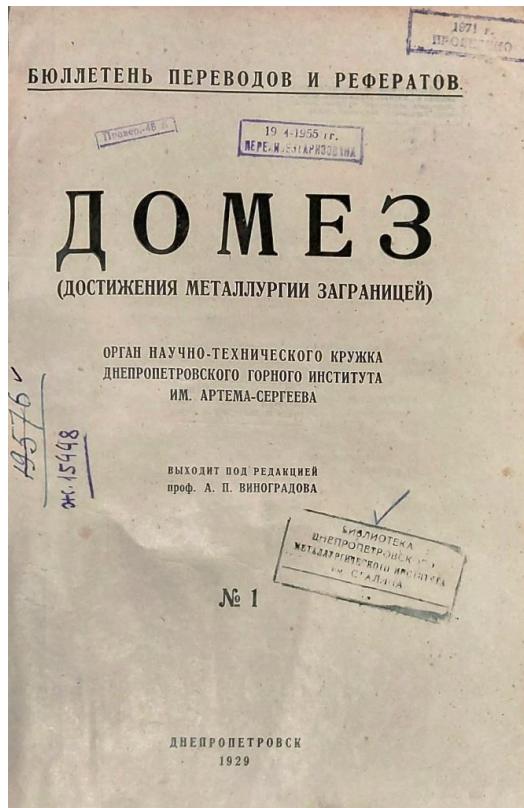


Рис. 3 Титульна сторінка першого примірника журналу «ДоМeЗ», 1929 р.

А ось як про цей факт пише відома краєзнавиця та доктор історичних наук Ганна Швидко у нарисі про П.Г. Рубіна: «Незважаючи на активну наукову діяльність П.Г. Рубіна, практичне значення його досліджень для народного господарства країни, революційні заслуги, наприкінці 1930 р. (коли він уже працював у Дніпропетровському металургійному інституті) вченого заарештували за сферометрикою в місцевому управлінні ГПУ-НКВД справою «Інженерного Центру» і навіть встигли винести вирок – вища міра покарання. Але вчасно надійшли з Москви два документи за підписами Сталіна та Молотова, якими забороняється арешт особливо цінних фахівців без узгодження з керівництвом Народного Комісаріату важкої промисловості. П.Г. Рубін, як і професор А.П. Виноградов (випускник КВГУ 1903 р.), були звільнені. А от його учневі та помічників з наукових і організаційних питань Я.О. Габинському не пощастило – його розстріляли». [3]

Від серпня 1931 року викладав в Донецькому металургійному інституті (ДМІ), обіймаючи посаду завідувача кафедри прокатки. У 1933 році професора Виноградова було обрано на посаду заступника директора ДМІ. За значні досягнення у роботі 1 листопада 1933 року професора А.П. Виноградова було нагороджено грамотою та званням уда-рника [2, 5].

2 листопада 1933 року професор А.П. Виноградов помер від інфаркту.

Перу вченого загалом належать близько 40 на-укових праць у галузі прокатного виробництва та

металографічних досліджень: монографій, статей, навчальних посібників. У фондах бібліотеки ДМетІ зберігається декілька фундаментальних праць вчено-го: «Основы калибровки прокатных валков» (1925), «Калибровка прокатных валков» (1934) та «Калибровка прокатных валков» (1950) у співав-торстві з Г.А. Виноградовим [6 - 8].

Мовна палітра праць вченого майже монохро-мна. У мережі Інтернет є у доступі лише одна українськомовна праця «Калібрування прокатних валків» 1934 року. Всі інші праці вченого – російськомовні. Це здивує, що вченого заслужує факт лінгвоциду, який мав місце в Україні за царської та радянської доби.

Гідним продовжувачем справи батька виявився молодший син вченого Гліб, який у 1933 році закінчив ДМетІ та працював на виробництві у 1934 – 1939 роках, а згодом у наукових установах в м. Маріуполі, Ленінграді та Києві.

У 1965 році захистив докторську дисертацію, а наступного року отримав звання професора. Від 1967 до 1983 року – був завідувачем відділу прокатки порошків у Інституті проблем матеріалознавства АН УРСР (м. Київ), в якому працював з 1957 до 1985 року.

Професор Гліб Андрійович Виноградов створив оригінальні стани для прокатки сипких матеріалів та відділ прокатки виробів з металевих порошків; обладнав єдину в СРСР спеціалізовану лабораторію спеченого прокату. Розробив теорію та технологію основ прокатки сипких тіл [9, 10].

У липні 2025 року виповнилося 120 років від дня

народження видатного вченого, засновника вітчизняної школи металургів-трубопрокатників, чл.-кор. АН УРСР, доктора технічних наук, професора Павла Терентійовича Ємельяненка (1905 - 1947). Розглянемо основні етапи біографії вченого-металурга та його вплив на розвиток трубопрокатної науки в Україні.

Павло Терентійович Ємельяненко народився 24 червня 1905 року у слободі Бобрикова-Петровська Міуського округу Області Війська Донського (нині село Бобрикове на Луганщині) у багатодітній родині сільського вчителя Терентія Мокійовича Ємельяненка та його дружини-домогосподарки Антоніни Павлівни, доньки місцевого священика. Батько малого Павлуся через незначний проміжок часу прийняв сан священика й обійняв посаду сільського батюшки у Бобриково-Петровському. Тут варто зауважити, що згідно з переписом населення, що відбувся 1897-го року у селі мешкало 2007 осіб, з яких 2005 – православної віри.

До 1921 року Павло жив на кошти батька, навчався у початковій школі до 1915-го року, а згодом у 1915-му – 1919 роках у Таганрозькій гімназії, в якій успішно закінчив три класи. У 1920-му закінчив трудову семирічну школу. У другій половині 1921-го року покинув батьківський дім та оселився разом із братом Володимиром у м. Таганрозі. Із січня 1922-го по травень 1924-го року працював учнем токаря по металу в ремонтно-механічних майстернях, однакож з вересня 1922-го року навчаючись у профтехнічній школі. У другій половині 1924-го року Павло працевлаштувався у центральних механічних майстернях міста Сніжного на Донбасі, став членом комсомолу.

У грудні 1924-го року він переводиться на роботу до Макіївського металургійного заводу до прокатного цеху у вальцетокарну майстерню, де і працює до липня 1926-го року. Водночас з 1925-го по 1926-й роки Павло Ємельяненко – член міської ради м. Макіївки.

У квітні 1926-го року П. Ємельяненко стає членом ВКП (б).

Працюючи у Макіївці Павло отримав каліцтво, після чого був визнаним інвалідом праці. Роботу на виробництві не припиняв, перевівшись до вагоноремонтних майстерень Дніпровського металургійного заводу у місті Кам'янському на Придніпров'ї на посаду розмітчика від липня 1926-го року. Павло працював у Кам'янському до червня 1927-го року, одночасно навчаючись у вечірньому робітничому технікумі [2].

Із вересня 1927-го по червень 1931-го П. Ємельяненко – студент гірничого, а згодом металургійного інституту в місті Дніпропетровську.

У липні – вересні 1928 року проходив військові навчання у таборах на базі 15-го артполку в м. Миколаєві та був визнаний придатним до служби у лавах збройних сил у воєнний час.

Отримавши фах вальцовальника чорних металів здібний студент Павло Ємельяненко був рекомендований до зарахування в очну аспірантуру по кафедрі обробки металів тисненням зі стипендією у 175 крб.

Від червня 1931-го по червень 1941-го року протягом десятиліття життя Павла Ємельяненка було пов'язане з Дніпропетровським металургійним інститутом (рис. 4).

Рис. 4 П.Т. Ємельяненко – співробітник ДМетІ, 1930-ті роки

Уже у квітні 1931-го року Ємельяненка було призначено помічником завідувача відділу масового розповсюдження технічних знань. За пів року у жовтні молодого науковця призначають старшим інспектором по навчальній частині ДМетІ.

Увесь 1932-й рік Павло Ємельяненко активно

займається лише науковою роботою, та вже від лютого 1933-го року він – декан механіко-термічного факультету по вечірньому відділенню. Ця робота виконується ним дуже сумлінно, що засвідчує запис в особистій справі про неодноразове преміювання молодого адміністратора 200 карбованцями.

Цікава особливість: документація у особовій справі Ємельяненка П.Т. до січня 1934-го року велась виключно українською мовою. Потім відбувся різкий перехід на російську, хоча у деяких паперах замість Ъ знаку стоїть ', а у самих документах спостерігаються помилки, обумовлені написанням російських слів українською абеткою.

Від квітня 1934-го року Ємельяненка знову зараховано на інженерну посаду до науково-дослідного сектора ДМетІ. Того ж року він захистив кандидатську дисертацію на тему: «Дослідження пільгерного процесу» та лише у вересні 1935-го був затверджений його науковий ступінь кандидата технічних наук. Щодо публікації кандидатської дисертації П.Т. Ємельяненка також є цікаві моменти, на яких ми зупинимось наприкінці цього нарису.

Водночас від жовтня 1931-го по січень 1935-го року науковець працював на посаді асистента кафедри обробки металів тисненням (прокатки) ДМетІ. Від січня 1935-го року він на посаді доцента кафедри прокатки. [2, 11]

Одна цікавинка щодо особливостей оплати праці доцента кафедри прокатки у травні 1935 року з особистої справи П.Т. Ємельяненка. Заробітна плата була основною – 260 карбованців за 360 годин річного навчального навантаження та за сумісництвом – 550 карбованців за виконання науково-дослідних робіт на металургійних підприємствах в якості наукового керівника трубної групи на кафедрі прокатки ДМетІ. Загальна сума місячної заробітної плати доцента – 810 карбованців. Багато це, чи мало? Зазначимо лише наступне: наявна у бібліотечному фонді краєзнавчого відділу обласної бібліотеки газета «Стальна магістраль», орган політвідділу Єкатерининської залізниці у 1935 році коштувала в кіосках продажу преси 6 коп., кілограм яблучного варення – 3 крб. 8 коп., а книга «Разгром чорного барона» – 3 крб.

У липні 1935-го року Павла Ємельяненка було виключено з лав ВКП(б)У із формулюванням «за притуплене бдительності» та відновлено у лавах членів комуністичної партії лише 1937-го з річним випробувальним терміном окремим рішенням Пленуму ЦК ВКП(б).

У цьому зв'язку цікавою є графа в особистому листкові з обліку кадрів, який Павло Ємельяненко заповнив 29 листопада 1937 року: «32. Результаты прохождения партчистки и партпрроверки». У ній науковець зазначав: «прошёл чистки, 1929 и 1934 г.г. без взысканий». Ось так виглядає сталінізм зсередини для звичайної людини.

У 1938-му році П.Т. Ємельяненко стає науковим консультантом створеного напередодні у грудні 1937-го року науково-дослідного трубного інституту. У лютому 1939-го року Павла Терентійовича затверджують у науковому званні доцента по кафедрі обробки металів тисненням. Того ж року він стає членом-кореспондентом Академії наук УРСР.

25 червня 1940-го року П.Т. Ємельяненко захистив докторську дисертацію у Ленінградському політехнічному інституті ім. Калініна на тему: «Основи

прокатки труб в системі «коса валцювка - пільгер процес».

У жовтні 1940 року в ДМетІ було створено кафедру трубопрокатного виробництва, завідувачем якої призначено доктора технічних наук, чл.-кор. АН УРСР Ємельяненка Павла Терентійовича. Причому затвердження на посаду відбулось згідно з наказом № 1224/к у м. Москві лише 13 березня 1941-го року.

У квітні 1941-го року П.Т. Ємельяненка було затверджено у званні професора по кафедрі трубопрокатного виробництва із окладом у 1300 рублів на місяць. Водночас по науково-дослідному сектору заробітна плата професора Ємельяненка була встановлена у розмірі 650 рублів на місяць. Багато це, чи мало? Для порівняння скажемо, що один номер газети «Дніпровська правда» в розріб тоді коштував 10 коп., а одна тонна кам'яного вугілля – 35 крб.

Тепер варто дещо розповісти про особисте життя вченого.

Як випливає з документів особової справи молодого науковця, у 1938-му році Павло Ємельяненко одружився з Беллою Михайлівною Альтер, яка працювала техніком у ДМетІ. Вона походила з родини службовців: її батько Альтер Михайло Романович був співвласником майстерні у дореволюційні часи, а мати – Альтер Марія Мусіївна була дімогосподаркою. У 1939-му році у молодого підружжя народилася донька.

На початку серпня 1941-го року родина Ємельяненків була евакуйована із Дніпропетровська. На Урал евакуюють співробітників науково-дослідного заводу трубного інституту та науковців, а Павло Терентійович опиняється у столиці Радянського Союзу місті Москві.

Цікавим є те, що з понад 210 співробітників трубного інституту, станом на липень 1941-го року, до міста Первоуральська було евакуйовано лише 43 працівники [12]. Їх було розміщено у навколошніх селах Талиці, Решетах та Алєксєєвке, а під приміщення для науковців-трубників було переобладнано три душові кімнати волочильного цеху новотрубного заводу: в них терміново прибрали водопровідні крані та поставили столи та саморобні стільці. Додайте до цього осінньо-зимову холоднечу в приміщенні цеху, карткову систему розподілу продуктів і непевність щодо подальшої перспективи наукових досліджень. Побачити світло у кінці тунелю за таких умов – це справжнє диво.

І воно сталося: у 1942-му році до Первоуральська з Москви прибуває Ємельяненко, призначений головним інженером трубного інституту, директором якого на той час був його студент, випускник ДМетІ 1936-го року Петро Васильович Савкін. Спілкуючись із заводчанами й науковцями, за спогадами сучасників Павло Терентійович повсякчас наголошує на тому, що невідповідні умови праці під час війни не повинні бути перепоною до наукової діяльності. Адже, що є головним для мислячої людини? Це його мізки. А думку спроможна зупинити

лише смерть. [12]

Основною причиною повернення Ємельяненка на Урал, напевно, була форс-мажорна ситуація, пов'язана зі зникнення під час евакуації та транспортування важливого елемента пілігримового стану – маховика, вагою у декілька десятків тонн. Саме у 1942-му році на Челябінському трубопрокатному заводі мали змонтувати цей стан, але виготовлення й монтаж маховика замість втраченого відремонтували би пуск важливого об'єкта оборони країни майже на рік. За інших обставин таке б рішення на рівні уряду й було б прийняте, але в умовах війни цей гордій вузол потрібно було розробати.

Того ж таки 1942-го року П.Т. Ємельяненко вине розрахунки при проєктуванні фактично нового пілігримового стану, які дозволяють позбутися у його конструкції 20-тонного маховика, потрібного для накопичення кінетичної енергії, аби зробити можливим виробництво труб для гарматних стволів. І це йому вдається, незважаючи на певний скепсис з боку колег-науковців. [12]

Ще не встигли висохнути чорнила, а перед науковцями поставлено нове завдання – розробка оригінальної технології виготовлення труб для мінометних стволів. І знову успіх – без збільшення витрат металу на 30-40% зріс випуск. [2]

Нажаль не обійшлося при впровадженні нової технології без проблем в результаті недотримання чіткої технологічної дисципліни на всіх етапах, або ж нерозуміння деяких нюансів технології виготовлення. Наведемо приклади.

Отже, значний відсоток мінометів не витримували заводських випробувань, оскільки труби, які постачали Первоуральці воєнному заводу, мали дефекти. Тож до Первоуральська приїхала урядова комісія на чолі з наркомом чорної металургії І.Ф. Тевосяном та академіками І.П. Бардіним та М.Г. Гудцом. Згідно з висновком членів комісії причиною виходу з ладу мінометів були дефекти сталеплавильного виробництва. Тому варто було попілішити технологічну дисципліну в сталеливарному цеху.

Та проблеми виникали й з вини трубопрокатників, зокрема у термічному відділенні. Оскільки головним на той час було гасло: «Якомога більше продукції для відправки на фронт», на Первоуральському новотрубному замість передбачених технологічною інструкцією вертикальних закалочних баків застосовували наявні горизонтальні ванни. У такому випадку вода заходила в трубу із двох кінців, а в середині утворювалася повітряна подушка – труба у цій зоні не закалялась. У підсумку мінометний ствол у цьому місці роздувало, як самовар. Виходом із ситуації стало застосування технології зачавантаєння труб у воду для закалки під кутом у сорок п'ять градусів, і повітряна подушка перестала бути причиною нерівномірного закалювання. [12]

Здається, рішення просте, але у світовій практиці можна навести безліч прикладів саме таких банаальних рішень, які вимагають від людини неабиякої кмітливості й уміння аналізувати ситуацію та

робити з неї правильні висновки. Напевно, якби П.Т. Ємельяненко не перебував у тісному контакті з виробничиками, то навряд чи зміг би у стислі терміни виявити й віправити існуючі технологічні проблеми.

За вирішення цієї задачі у 1943-му році науковця Ємельяненка та інженера Панюшкіна було представлено до Державної Сталінської премії першого ступеня (100 тис. рублів).

Людина високої внутрішньої організованості Павла Терентійовича Ємельяненка вимагав цього ж і від оточуючих. Заслуговує на особливу увагу ґрунтовний лист вченого до свого наступника на посаді головного інженера інституту Ноя Юрійовича Тайця, також співробітника ДМетІ від 1935-го року. У ньому Павло Терентійович чітко формулює по суті програму роботи колективу вчених, поіменно зазначаючи їх, з чітким формулюванням задач: «Роботу № 1 в частині, яка стосується зварювання за методом Патона здійснює Соркін. Він же контактує у Свердловську з фахівцями у питанні зварювання за методом Нікітіна...». [11]

Того ж таки 1943-го року Ємельяненка було призначено до складу Радянської закупівельної комісії у США в якій він працював до 1945-го року. Закордонне відрядження неабияк збагатило талановитого вченого. Американські вчені висловлювали непідробне захоплення здібностями талановитого колеги. [2, 12]

Повернувшись до СРСР П.Т. Ємельяненко працює на посаді завідувача лабораторії прокатки труб у Центральному науково-дослідному інституті чорної металургії у Москві.

Не забуває науковець про рідні металургійний та трубний інститути, продовжуючи консультувати їхніх фахівців, готуючи аспірантів. Це підтверджують матеріали, віднайдені автором у особовій справі вченого-трубника Якова Юхимовича Осади 1920-го року народження, який у 1943-му році вступив до аспірантури коли трубний інститут перебував у евакуації на Уралі. Принагідно зазначимо, що у 1952 – 1961 роках Я.Ю. Осада очолював трубний інститут, а від 2000-го року останній носить його ім'я. [14]

Та, на жаль, дають про себе знати хвороби, на які вченій не звертав уваги у часи воєнного лихоліття.

13 листопада 1947-го, у віці 42 років Павла Терентійовича Ємельяненка не стало. Остання книга науковця під назвою «Теорія косої та пілігримової прокатки» вийшла друком вже по смерті автора у 1949-му році.

У науковій бібліотеці ДМетІ УДУНТ звичайно ж є означена вище праця науковця, але з огляду на тематику пропонованого читачам нарису більш цікавою є інша книга вченого, що має назву «Пільгерстани», яка вийшла друком 1937-го року (перше видання 1933 р.) та є оприлюдненим для широкого загалу текстом кандидатської дисертації інженера П.Т. Ємельяненка (рис. 5).

Рис. 5 «Пильгерстани» – одна з головних праць П.Т. Ємельяненка, 1933 р.

Уважному читачеві одразу впадуть в око деякі особливості цієї праці. По-перше її поліграфічний рівень: доброкісна чорна із золотими літерами палітурка та майже папіросний папір самої книги. Понаду, рисунки у книзі являють собою просто вклесні фото, виконані під час експериментів, формули майже скрізь вписані фіолетовим чорнилом. Потретє, у деяких місцях формул, або ж фото не вистачає (наприклад, вказано рис. 96, а його немає) про що зроблена окрема примітка олівцем ДСП (рос. «для службового пользования»). Напевно, час написання роботи накладав свій відбиток і на працю науковця: все, що могло допомогти ворогові зрозуміти хід його думок мало бути приховане з огляду на непросту політичну ситуацію.

Про відхід у вічність професора П.Т. Ємельяненка було сповіщено некрологом у газеті «Дніпровська правда» восени 1947 року, що зайвий раз підкреслює значущість особистості вченого для вітчизняної науки.

На загадку про час роботи П.Т. Ємельяненка у ДМетІ на одному з його корпусів встановлено пам'ятну дошку.

Науковий доробок вченого П.Т. Ємельяненка за різними джерелами перевищує вісімдесят окремих наукових праць: монографій, підручників, наукових та реферативних статей. У вільному доступі в бібліотеках нашого міста віднайдено шістдесят шість оригінальних праць Павла Терентійовича [13]. У 1930-х роках в журналі «ДоМeЗ» (від 1936 року «Теорія і практика металургії») вийшло чимало статей вченого з питань трубопрокатного виробництва. Монографії автора про пільгерну та косу прокатку залишаються актуальними і у наші дні [15, 16].

Цілком слушно можна вважати частиною спадщини вченого таких представників колективів

працівників науково-дослідного трубного інституту та кафедри ОМТ ДМетІ як Якова Юхимовича Осаду, Павла Івановича Орро, Олександра Андрійовича Шевченка, Сергія Івановича Борисова, Марка Ісааковича Ханіна, Валентина Миколайовича Данченка, Володимира Михайловича Друяна та багатьох інших.

Тихо котить свої води степова річечка Сотова й впадає до річки Нагольні. У цьому місці й донині стоїть-посміхається село Бобрикове. На південь від нього геологи ще понад сто років тому виявили золотоносне родовище. Та головним скарбом будь-якої землі є не її природні багатства, а люди, які на ній живуть, залишаючи по собі добру пам'ять.

Підводячи підсумок викладеному у цій статті значимо наступне. Становлення та розвиток вищої технічної освіти у Придніпровському краї налічує понад сто двадцять п'ять років. Неможливо уявити цей процес без факту передачі й накопичення знань від вченого до вченого в рамках утворення наукових шкіл. Лише тягливість наукового процесу забезпечує сталій розвиток інтелектуальної думки. Приклад життєво і творчого шляху вчених-металургів Виноградова і Ємельяненка наочно підкреслює висловлену вище тезу.

Також варто окремо звернути увагу на лінгвоцид щодо використання української мови при публікації наукових текстів технічного спрямування за радянської доби в Україні.

Майбутній розвиток науки в Україні можливо забезпечити лише спираючись на праці вчених минулих поколінь. Тому варто приділяти особливу увагу вивченю джерельної бази наукових досліджень, біографій вчених, аби краще розуміти виклики доби й правильно вибудовувати пріоритети розвитку.

Перелік посилань

- Савчук В. Андрій Виноградов – вчений-металург і металознавець // Мое Придніпров'я. Календар-альманах пам'ятних дат Дніпропетровської області на 2025 рік : краєзнавче видання / Управління культури, націонал. і релігій Дніпропетр. облдержадміністрації, Дніпропетров. обл. універсал. наук. б-ка ім. Первоучителів слов'янських Кирила і Мефодія ; упоряд. С. Жилінська, ред. І. Голуб. – Дніпро : ДОУНБ, 2024. – С. 91 – 94. URL: <https://www.libr.dp.ua/fullkr/index.php?pbp=866>
- Мироненко М. Постаті: Нариси про вчених – Дніпро: Ліра, 2025. – 116 с.
- Швидько Г. Вчений і літописець історії нашого краю П.Г. Рубін URL: https://www.dnipro.libr.dp.ua/index.php?route=information/news/info&news_id=254
- Мироненко М. Павло Рубін – професор-пioner koksokhimii URL: https://www.dnipro.libr.dp.ua/Pavlo_Rubin_profesor_pioneer_koksokhimiyi
- Мироненко М. Андрій Виноградов: професор-зачинатель двох наукових шкіл в Україні URL: https://www.dnipro.libr.dp.ua/Andriy_Vynohradov_profesor-zachynatel_dvokh_naukovykh_shkil_v_Ukrayini
- Виноградов А. Основы калибровки прокатных валков – Х.: Гос. изд-во Украины, 1925. – 136 с.
- Виноградов А.П. Калибровка прокатных валков – Х.-К.: ДНТВУ, 1934. – 248 с.
- Виноградов А.П., Виноградов Г.А. Калибровка прокатных валков – Л.-М.: «Металлургиздат», 1950. – 344 с.
- Виноградов Гліб Андрійович / В. В. Картузов // Енциклопедія Сучасної України [Електронний ресурс] / редкол. : І. М. Дзюба, А. І. Жуковський, М. Г. Железняк [та ін.] ; НАН України, НТШ. – Київ: Інститут енциклопедичних досліджень НАН України, 2005. – Режим доступу: <https://esu.com.ua/article-34062>.
- Виноградов Г.А., Семенов Ю.Н., Катрус О.А., Каташинский В.П. Прокатка металлических порошков. – М.: Металлургия, 1969. – 382 с.
- Мироненко М. Павло Терентійович Ємельяненко: видатний вчений-засновник української школи металургів-трубопрокатників // Мое Придніпров'я. Календар-альманах пам'ятних дат Дніпропетровської області на 2025 рік : краєзнавче видання / Управління культури, націонал. і релігій Дніпропетр. облдержадміністрації, Дніпропетров. обл. універсал. наук. б-ка ім. Первоучителів слов'янських Кирила і Мефодія ; упоряд. С. Жилінська, ред. І. Голуб. – Дніпро : ДОУНБ, 2024. – С. 52 – 56. URL: <https://www.libr.dp.ua/fullkr/index.php?pbp=866>
- Творцы стальних артерий – Г.И. Гуляев, О.А. Семёнов. А.А. Шведченко и др.: Ред. кол.: О.А. Семёнов (отв. ред.) и др. – Днепропетровск, Промінь, 1989. – 151 с.
- Член-кореспондент Павло Ємельяненко – політ фенікса : До 120-ліття від дня народження : Рекоменд. біобібліограф. покажчик / Дніпропетр. управління культури, націонал. і релігій облдержадміністрації, Дніпропетров. обл. універсал. наук. б-ка ім. Первоучителів слов'янських Кирила і Мефодія; упоряд. : М.А. Мироненко, С.Ю. Жилінська, ред.: І.С. Голуб. – Дніпро: ДОУНБ, 2025. – 56 с. (Серія «ВЧЕНИ ДНІПРОПЕТРОВЩИНИ». Вип. 9).
- Мироненко М. Яків Осада – вчений і організатор трубопрокатної науки в Україні URL: https://www.dnipro.libr.dp.ua/Yakiv_Osada_vchenyy_i_organizator_truboprotatnoi_nauky_v_Ukrayini
- Пильгерстани: монография / П.Т. Емельяненко. – Харьков: ДНТВУ, 1937. – 640 с.
- Теория косой и пилигримовой прокатки: монография / П.Т. Емельяненко. – Москва: Металлургиздат, 1949. – 492 с.

References

- Savchuk, V. (2024). Andrii Vynohradov – vchenyi-metalurh i metaloznavets. *Moje Prydniprovia. Kalendar-almanakh pamiatnykh dat Dnipropetrovskoi oblasti na 2025 rik*, 91-94. <https://www.libr.dp.ua/fullkr/index.php?pbp=866>.
- Myronenko, M. (2025). Postati: *Narysy pro vchenykh*. Lira.
- Shvydko, H. Vchenyi i litopysets istorii nashoho kraiu P.H. Rubin. https://www.dnipro.libr.dp.ua/index.php?route=information/news/info&news_id=254
- Myronenko, M. Pavlo Rubin – profesor-pioner koksokhimii. https://www.dnipro.libr.dp.ua/Pavlo_Rubin_profesor_pioneer_koksokhimiyi
- Myronenko, M. Andrii Vynohradov: profesor-zachynatel dvokh naukovykh shkil v Ukraini. https://www.dnipro.libr.dp.ua/Andriy_Vynohradov_profesor-zachynatel_dvokh_naukovykh_shkil_v_Ukrayini
- Vinogradov, A. (1925). *Osnyovy kalibrovki prokatnykh valkov*. Gos. izd-vo Ukrayiny.
- Vinogradov, A. P. (1934). *Kalibrovka prokatnykh valkov*. DNTVU.
- Vinogradov, A. P., Vinogradov, G. A. (1950). *Kalibrovka prokatnykh valkov*. "Metallurgizdat".
- Vynogradov, G. A. (2005). Encyklopedija Suchasnoji Ukrayiny [Elektronnyj resurs]. <https://esu.com.ua/article-34062>.
- Vinogradov, G. A., Semenov, Iu. N., Katrus, O. A., Katashinskii, V. P. (1969). *Prokatka metallicheskikh poroshkov*. Metallurgija.
- Myronenko, M. (2024). Pavlo Terentijovych Jemeljanenko: vydatnyj vchenyy-zasnovnyk ukrajinskoji shkoly metalurghiv-truboprotatnykiv. *Moje Prydniprovia. Kalendar-almanakh pamiatnykh dat Dnipropetrovskoj oblasti na 2025 rik : krajeznavche vydannja*, 52-56. <https://www.libr.dp.ua/fullkr/index.php?pbp=866>
- Guliaev, G. I., Semenov, O. A., & Shvedchenko, A. A. et al. (1989). *Tvortcy stalnykh arterii*. Promin.
- Myronenko, M. A., Zhylinska, S. Ju. (2025). Chlen-korespondent Pavlo Jemeljanenko – polit feniksa : Do 120-littja vid dnja narodzhennja. Rekomend. bio-bibliograf. Pokazhchyk, 56 p.
- Myronenko, M. *Jakiv Osada – vchenyy i orghanizator truboprotatnoi nauky v Ukrayini*.
- Emelianenko, P. T. (1937). *Pilgerstany: monografija*. DNTVU.
- Emelianenko, P. T. (1949) *Teoria kosoi i piligrimovoї prokatki: monografiia*. Metallurgizdat.

Надіслано до редакції / Received: 08.07.2025
Прийнято до друку / Accepted: 08.12.2025

Негруб С.Л.¹, Бончук С.В.¹, Герасимчук А.П.²

Вплив розташування об'єкту під час 3D-друку на якість деталі

¹Український державний університет науки і технологій, м. Дніпро, Україна

²АТ "Дніпропетровський агрегатний завод", м. Дніпро, Україна

Nehrub S.L.¹, Bonchuk S.V.¹, Herasymchuk A.P.²

The impact of object orientation during 3D printing on part quality

¹Ukrainian State University of Science and Technologies, Dnipro, Ukraine

²Private Joint Stock Company "Dnipropetrovsk Aggregate Plant", Dnipro, Ukraine

Анотація. Мета. Дослідження та практична оцінка впливу розташування деталей на столі під час 3Д-друку на витрати матеріалу, час друку, і якість деталей машинобудування. **Методика.** Проведені практичні випробування у реальних умовах виробництва з попередньою оцінкою результатів друку у середовищі програмного продукту Ultimaker Cura 5.8.1 та наступним друком деталі у 3Д принтері ANYCUBIC PHOTON M3 MAX. **Наукова новизна та результатами.** Практично проведено дослідження реального 3Д-друку фотополімерною смолою деталей після аналізу різних варіантів розташування 3Д-моделі на платформі побудови. З'ясовані дослідним шляхом раціональні положення для 3Д моделей у просторі для зменшення часу друку, витрати матеріалу та усунення дефектів 3Д друку. Виконана оцінка впливу розташування деталей на столі під час 3Д-друку фотополімерною смолою ESUN Hard-Tough Resin білого кольору на витрати матеріалу, час друку, та якість деталей машинобудування. Зафіксовано значущий вплив розташування моделі на платформі побудови – а саме під кутом - на якість друку окремих елементів деталей, особливо дрібнорозмірних, на кількість витраченого матеріалу та час друку. **Практична значущість.** Проведені дослідження дозволили більш свідомо виконувати розташування 3Д моделей на платформі побудови, попередньо оцінити витрати матеріалу на підтримки та відредактувати положення моделі у разі невдалого вибору та тим самим зменшити час друку і кількість втрат у наслідок дефектів друку через відсутність підтримок. Одержання практичного досвіду 3Д-друку та формування практичних рекомендацій, що дозволило покращити стан 3Д-виробництва на підприємстві.

Ключові слова: Аддитивне виробництво, Photon M3 Max, витрата матеріалу, фотополімерна смола ESUN Hard-Tough Resin, об'єм підтримок, 3Д друк, час 3Д друку.

Abstract. Purpose. Research and practical evaluation of the impact of part placement on the table during 3D printing on material consumption, printing time, and quality of mechanical engineering parts. **Methodology.** Practical tests were conducted in real production conditions with a preliminary assessment of printing results in the Ultimaker Cura 5.8.1 software environment and subsequent printing of the part in a 3D printer ANYCUBIC PHOTON M3 MAX. **Originality and Findings.** A practical study of real 3D printing of parts with photopolymer resin was conducted after analyzing various options for the location of the 3D model on the build plate. Rational positions for 3D models in space were experimentally determined to reduce printing time, material consumption, and eliminate 3D printing defects. An assessment of the influence of the location of parts on the table during 3D printing with white photopolymer resin ESUN Hard-Tough Resin on material consumption, printing time, and quality of mechanical engineering parts was performed. A significant influence of the location of the model on the build plate - namely at an angle - on the printing quality of individual elements of parts, especially small ones, on the amount of material consumed, and printing time was recorded. **Practical value.** The conducted research allowed us to more consciously place 3D models on the build plate, pre-estimate the material costs for supports and edit the position of the model in case of an unsuccessful choice, thereby reducing printing time and the number of losses due to printing defects due to the lack of supports. Gaining practical experience in 3D printing and forming practical recommendations, which allowed us to improve the state of 3D production at the enterprise.

Keywords: Additive Manufacturing, Photon M3 Max, material consumption, photopolymer resin ESUN Hard-Tough Resin, support volume, 3D printing, 3D printing time.

Introduction. Additive manufacturing technology has opened up new opportunities for creating complex shapes and structures in mechanical engineering. 3D printing is essentially a very important process when it comes to working out the details of design and developing new products. It can easily produce internal sharp corners, complex contours, and even build structures that are completely inaccessible to traditional machining or CNC manufacturing. This is what makes additive manufacturing a powerful tool in the creation of part prototypes intended for casting and machining, as it can handle a wide range of product

design features [1].

Additive manufacturing allows for the production of parts ranging in size from micro to macro scale. However, the accuracy of printed parts depends on the accuracy of the used method and the printing scale. For example, micro-scale 3D printing creates problems with resolution, surface treatment and layer bonding, which sometimes require post-processing methods such as sintering [2]. On the other hand, the limited range of materials available for 3D printing creates problems when using this technology in various industries. Thus, there is a need to develop suitable

materials that can be used for 3D printing. Further research is also needed to improve the properties of 3D-printed parts [3].

Analysis of literature data and problem statement. Scientific publications often focus on the following issues in the printing field:

- optimization of printing parameters to improve mechanical properties;
- analysis of the economic efficiency of technology implementation;
- elimination of internal defects that occur during the printing process.

– In the article 'Effect of printing orientation on mechanical properties of FDM 3D printed parts' (ResearchGate) [4], three orientations (XY, YZ, ZX) were studied in FDM printing. The results showed that the YZ orientation provides higher tensile and impact strength, while the XY orientation provides maximum hardness. This confirms the anisotropy of the material due to its layered structure.

– The systematic review 'Impact of 3D printing orientation on accuracy, properties, cost, and time efficiency of additively manufactured dental models' (BMC Oral Health, 2024) [5] focuses on dental applications. The authors concluded that the vertical orientation of models allows more details to be placed in a single printing session, but horizontal orientation proved to be more optimal in terms of accuracy, time reduction, cost, and material usage.

The study 'The Influence of Printing Orientation on Surface Texture Parameters' (PMC) [6] analysed roughness parameters (R_a , R_z) in detail. It was found that the smoothest surface is formed at an orientation of 0° tilt (parallel to the working platform). As the angle of orientation increases, the surface parameters deteriorate significantly, which is critical for high-precision products.

– The article 'Influence of Printing Orientation on the Mechanical Properties of Provisional Polymeric Materials Produced by 3D Printing' (Polymers, 2025) [7] analyses samples of dental polymers. The highest bending strength and modulus of elasticity were shown by samples printed at an angle of 90° . This confirms that in dentistry, the choice of orientation has a direct impact on the reliability of prostheses.

– The article 'Why Part Orientation Matters in 3D Printing' (AZoM) [8] explains that orientation affects all key parameters: mechanical properties, printing time, number of supports, surface quality, and cost. The authors emphasise anisotropy as the main factor that makes the right choice of location critically important.

– Similar conclusions regarding the orientation of objects during printing are presented in the article 'Build orientation optimisation of additive manufactured parts for better mechanical performance by utilising the principal stress directions' [9], which presents an algorithm for determining the optimal print orientation in order to increase the mechanical strength of parts.

Some of these issues – defects, uneven mechanical strength due to limited materials, high prices and small production volumes – are being addressed

through further scientific research and the development of advanced materials and additive manufacturing methods. There are no specific practical recommendations regarding the placement of the 3D model on the build platform, the placement of supports, and the time required to build the part, nor is there any correlation between these actions. This creates serious problems during the manufacturing of parts using 3D printing, as it is an energy-intensive and time-consuming process that may not produce the desired result. As a result, the part or its individual element is not printed in full. This situation leads to financial losses due to increased material expenses, electricity costs, and working time. Thus, research on this issue is relevant, especially in the current climate of economical consumption.

Research goal and objectives. The goal of this work is to study and practically evaluate the impact of the placement of parts on the build platform during 3D printing on material consumption, printing time, and the quality of printed parts for general mechanical engineering.

One of the important elements of design is the location of the part on the build platform of the 3D printer, which significantly affects printing time, material consumption, and the quality of the final product. Let's examine the main factors that affect the placement of a 3D model during printing and how to correctly find the position of the future part on the build platform of a 3D printer, taking all factors into account.

The location of the part can significantly change the printing time due to the number of layers. Orienting the part along the Z-axis (vertically) usually requires more layers, as each layer is added as the object grows. The more layers, the longer the printing time. If the part is printed vertically, the number of layers is at its maximum, which increases the printing time compared to printing in a horizontal position, where there are fewer layers but each layer has a larger surface area.

The orientation of the part often affects the need for supports. If the part has protrusions or complex geometric elements, the layout may require more support structures. Printing complex parts horizontally can reduce the number of supports, while vertical orientation may require more to ensure the strength and stability of the part during printing.

At the same time, increasing the number of supports not only increases material consumption and printing time, but also requires additional time after printing to remove them and further process the part.

After considering and analyzing several positions from different angles, it is possible to find a position in which the printing time and quality will be optimal.

In Fig. 1, the part is positioned completely horizontally, with one of the surfaces serving as a platform for mounting on the table during printing. In this case, there are no supports at all and the printing time is minimal. However, after printing, if the part is thin-walled, there is a risk of damaging the surface when removing it from the table.

In the second case (Fig. 2), the part is positioned

vertically and raised 5–8 mm above the platform for stabilization. Due to its cylindrical shape, the print requires supports located both outside and inside the part. This results in maximum printing time, as the number of layers is maximum, and increased material consumption and the need for additional processing

after removing the supports.

In Fig. 3, the part is tilted at an angle of 10-20° and raised 5-8 mm above the platform. Supports are only needed on the side attached to the table, which reduces material consumption compared to a vertical position.

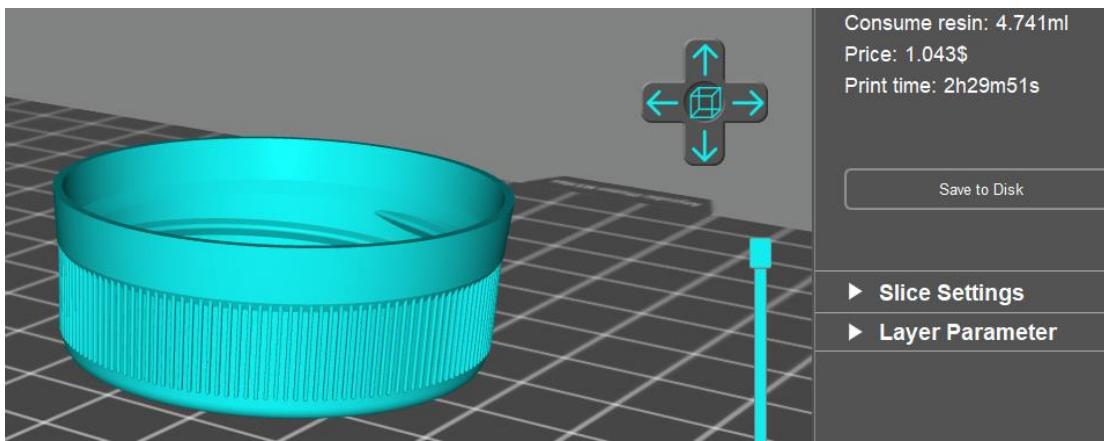


Fig. 1 Horizontal positioning of the part on the 3D printer plate

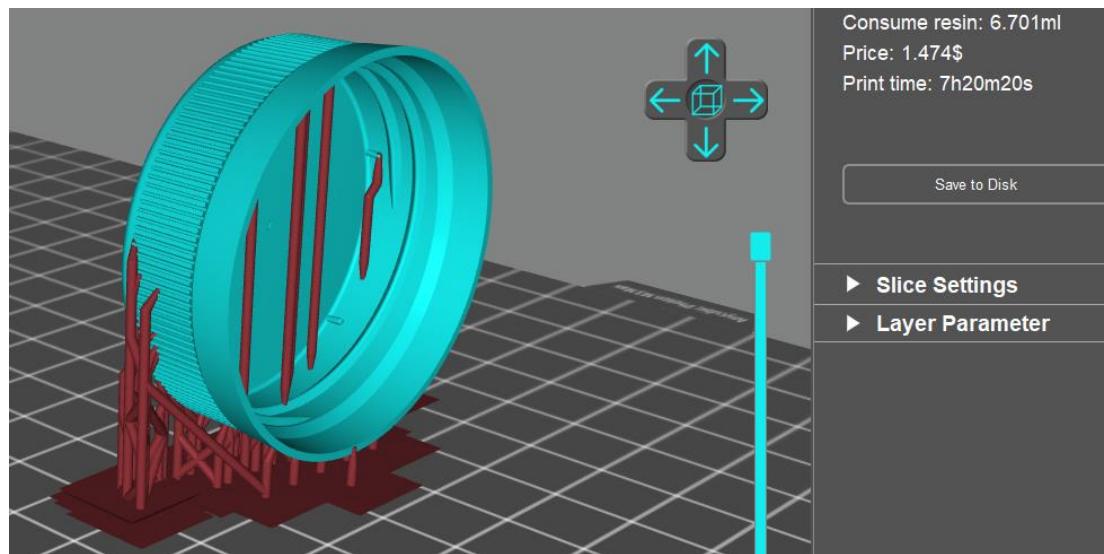


Fig. 2 Vertical positioning of the part on the 3D printer table

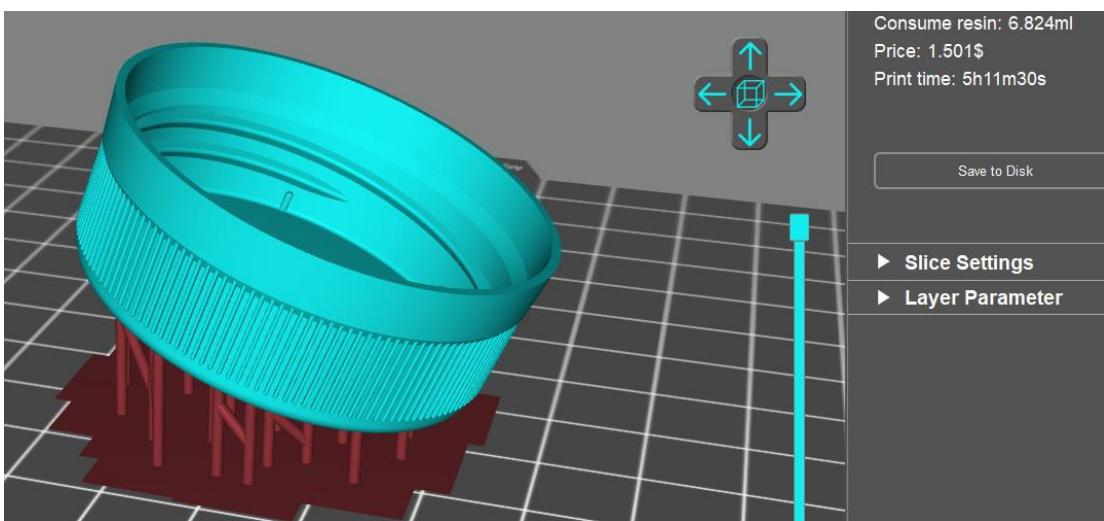


Fig. 3 Positioning of the part at an angle to the 3D printer table

It is believed that photopolymer printing is performed at an angle in order to reduce the number of printing failures by reducing the surface area exposed to resin during printing. This orientation of the object on the table reduces the tensile force on the working plate and minimizes the risk of deformation and delamination. Angled printing improves print quality by reducing the visibility of layer lines through more efficient resin runoff and provides better support for overhanging elements, resulting in a surface with less roughness than when printing without an angle.

The printing time is 5 hours, 11 minutes and 30 seconds, which is longer than with a horizontal orientation (2 hours, 9 minutes and 5 seconds), but shorter than with a vertical orientation (7 hours, 20 minutes and 20 seconds). This orientation reduces the risk of damage to surfaces when removing the part from the table.

Thus, selecting the optimal orientation angle allows you to achieve a balance between printing speed and simplifying further processing. The horizontal position is suitable for parts with simple shapes, the vertical position is suitable for compact use of space, and the angular position is a compromise that reduces the risk of damage and defects.

The next parameter affected by the location of the part is the amount of material used for 3D printing. As discussed above, incorrect positioning can lead to the need for a larger number of supports, which will

increase the amount of material used for printing. The optimal orientation of the model in the 3D printer space can reduce the number of supports or eliminate them altogether.

If the part is poorly positioned, it may require a significant amount of support structures to ensure printing stability. This not only increases material consumption, but also requires more time for manufacturing and subsequent removal of the supports. Optimal orientation, such as horizontal, can significantly reduce the number of supports or eliminate them altogether.

For hollow parts, the orientation determines how the internal cavities and stiffening ribs will be formed. Choosing the correct orientation angle can ensure efficient use of the filling material, reduce its quantity, and take into account the location of holes for removing excess material.

Proper orientation allows you to reduce the overall amount of material while maintaining the required strength of the product. This is especially important for complex parts where voids and supports can significantly affect the final cost.

Thus, choosing the optimal part placement minimizes material consumption, reduces printing time, and facilitates processing. This is especially true for hollow products, where it is important to consider the layout of the internal filling and the points of drainage for excess material.

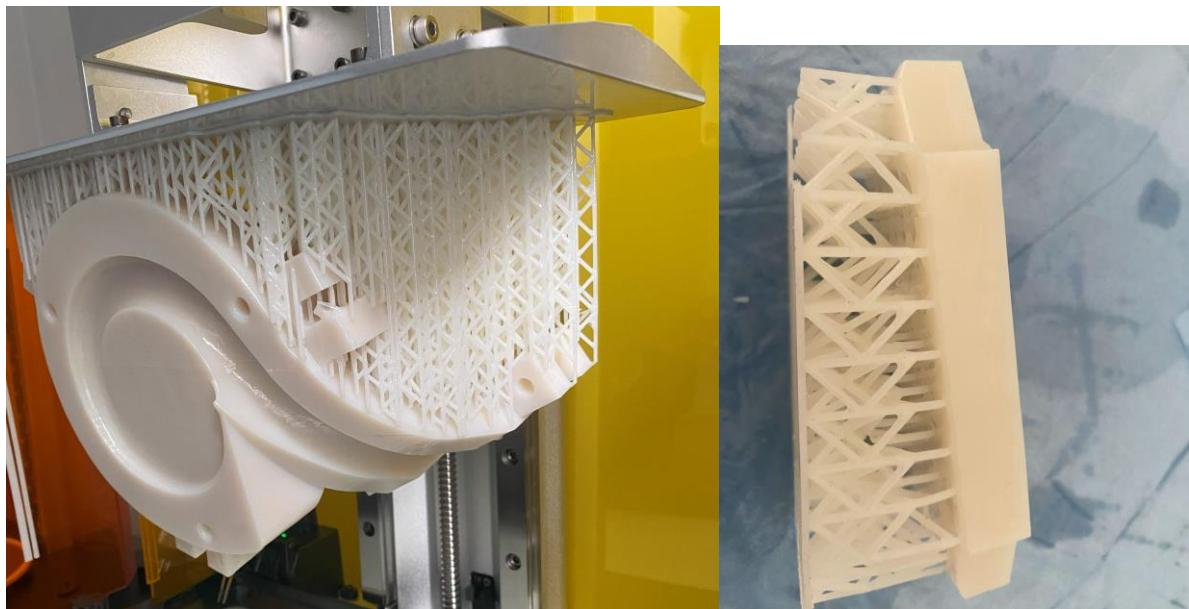


Fig. 4 Examples of supports formed during 3D printing.

The placement of the part affects another important parameter, namely the quality of the printed surfaces of the part. Vertical orientation of parts often results in a noticeable staircase effect on surfaces inclined to the Z-axis. This is due to the technical limitations of layer-by-layer material deposition. To improve surface quality, the part can be reoriented, but this may increase the number of layers and printing time. Surfaces in contact with supports are usually of lower quality, requiring additional post-processing. Reducing the use

of supports by correctly orienting the part helps to improve the final appearance of the product.

Parts with detailed features or sharp corners require careful orientation selection to minimize printing errors. Poor placement can result in defects and printing inaccuracies.

Thus, the quality of printed surfaces depends on the correct placement of the part on the platform. Vertical placement is better for parts that require minimal contact with supports, but the risk of defects on the side of

the platform remains. Horizontal placement is suitable for simple shapes, but complex elements may lose quality.

Saving space on the platform is another parameter that depends on the location of parts on the 3D printer table. If a 3D printer prints several parts at once, correct placement will ensure efficient use of the plate space. This approach will increase the number of objects printed simultaneously and reduce the overall production time.

For example, let's look at these four mould parts.

The size of the plate on which the parts are printed is 300x300x150 mm. Let us consider, for example, these four casting mould parts (fig. 5). The size of the plate on which the parts are printed is 300 x 300 x 150 mm. If the parts are placed horizontally during printing (fig 5), only two parts can be placed on the plate, and the total printing time for the entire mould will be approximately 14.5 hours. This arrangement will affect not only the printing time but also the quality of the working surfaces due to the chosen placement of the supports.

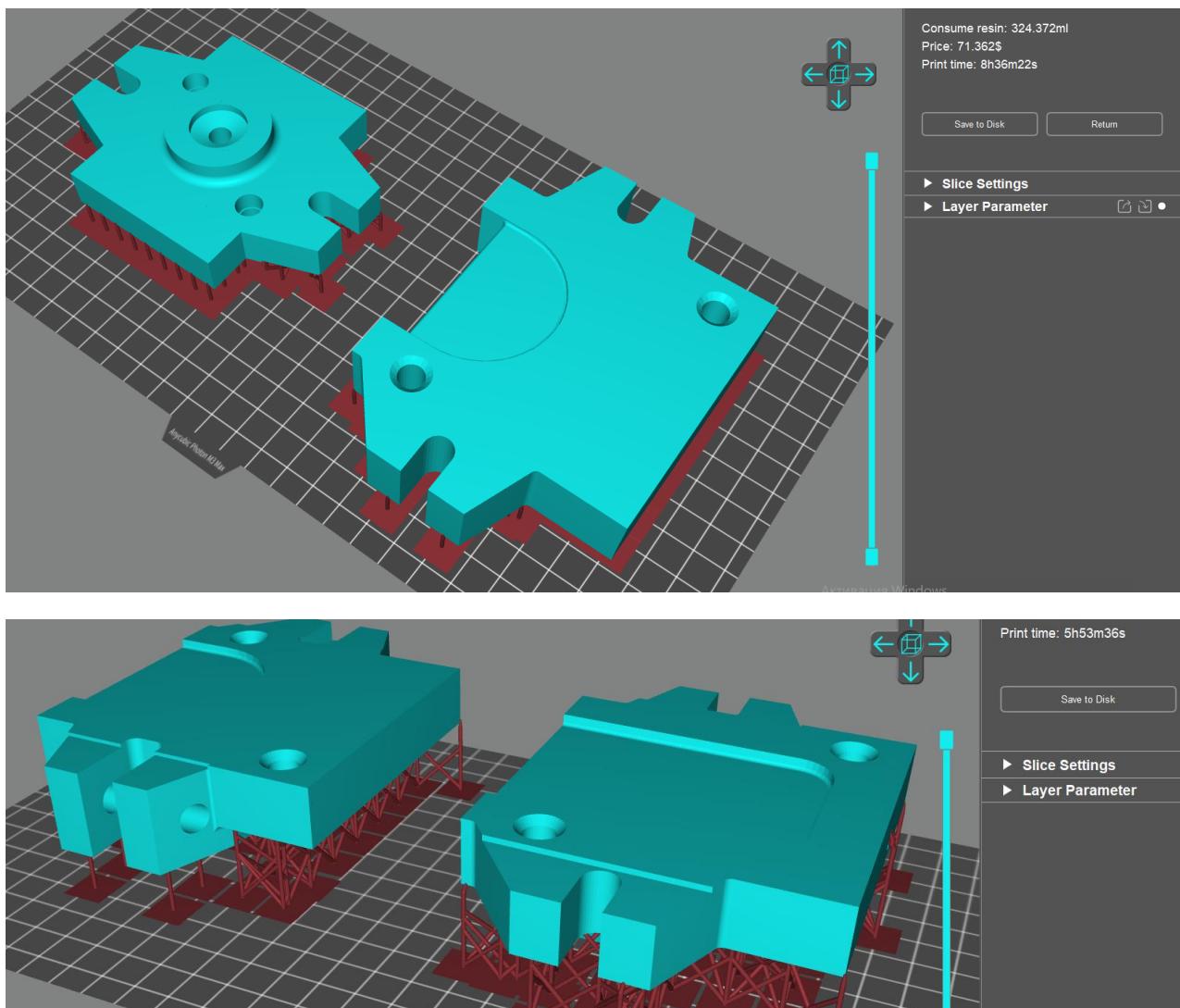


Fig. 5 Different layouts for parts on a 3D printer plate (two parts)

When printing parts horizontally on a 300×300×150 mm plate, only two parts can be placed at a time. The total printing time for four parts in this position is 15 hours. A significant disadvantage of this option is the use of supports that come into contact with the moulding surfaces and affect the quality of the finished products due to the need to remove them later. An important disadvantage of this option is the use of supports that come into contact with the forming surfaces and affect the quality of the finished products due to the need to remove them later.

If the parts are placed vertically (Fig. 6), all four objects can be placed on the platform at the same time. In this case, the supports do not come into contact with the critically important surfaces of the parts. The total printing time is reduced to 13 hours, which improves the productivity of the process. However, the possibility of deformation due to thermal stresses should be taken into account. The upper layers cool more slowly, creating additional pressure on the lower ones, which can lead to distortion of the shape.

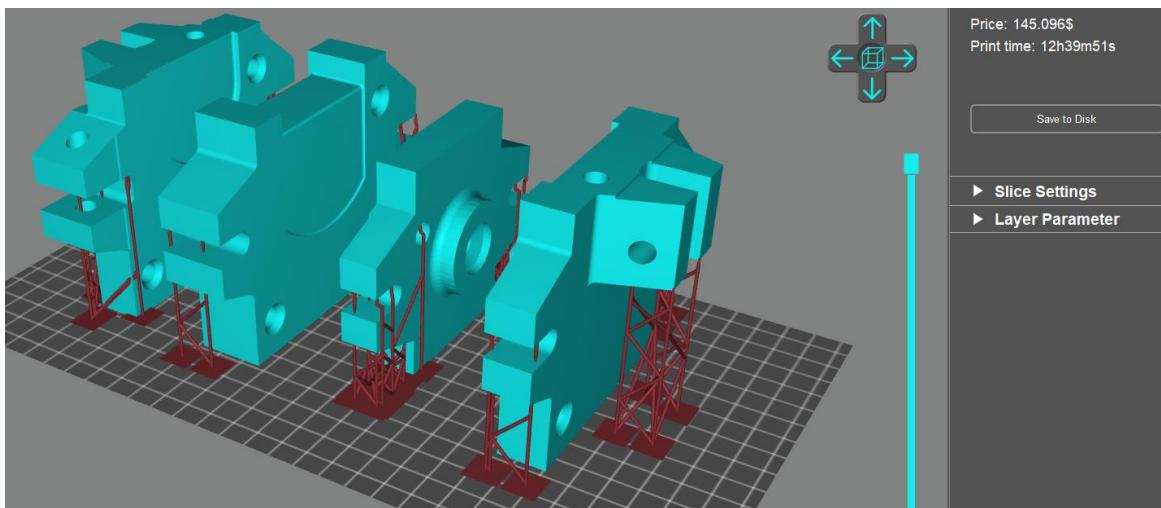


Fig. 6 Different layouts for parts on a 3D printer plate (four parts)

The orientation of a part can also affect its deformation due to thermal stresses. Vertical orientation can lead to more pronounced deformation, as the upper layers cool more slowly and can put pressure on the lower layers.

Conclusion. Optimizing the placement of parts in 3D printing helps to balance the following parameters:

Reducing printing time by reducing the number of layers and the volume of supports.

Saving material by minimizing the volume of supports and efficiently utilizing the filling of the part's cross-section.

Improving surface quality by correctly orienting the part relative to the Z-axis.

Minimizing defects by reducing the likelihood of deformations and errors.

Designing and preparing for 3D printing does require specific knowledge and approaches that differ from conventional manufacturing methods such as machining or casting. There are certain specifics and limitations that must be taken into account when 3D printing. Parts should be positioned to minimize the need for support. This will reduce material consumption and post-processing time. Parts that will be under load are best printed in an orientation where the layers do not weaken key areas, i.e., avoid placing load areas along the planes of the layers. For smooth surfaces, place important areas of the model parallel to the platform plane. Position parts at an angle of 15–45° to the print plane and 8–12 mm away from the table to reduce the effect of sticking to the platform and avoid defects.

Thus, the optimal placement of a part is a compromise between quality, time and material consumption.

Перелік посилань

1. Адитивне виробництво: технологія, матеріали та переваги 3D-друку - Makerly. <https://makerly.eu/uk/adytyvne-vyrobnyctvo-tehnologiya-materialy-ta-perevagy-3d-druku/> (date of application 04.09.2025).
2. Jasgurpreet Singh Chohan, Rupinder Singh, Kamaljit Singh Boparai, Rosa Penna, Fernando Fraternali, Dimensional accuracy analysis of coupled fused deposition modeling and vapour smoothing operations for biomedical applications, Composites Part B: Engineering, Volume 117, 2017, Pages 138-149, ISSN 1359-8368, [https://www.researchgate.net/publication/314275289_Dimensional_accuracy_analysis_of_coupled_fused_deposition_modeling_and_vapour_smoothing_operations_for_biomedical_applications_\(date_of_application_04.09.2025\).](https://www.researchgate.net/publication/314275289_Dimensional_accuracy_analysis_of_coupled_fused_deposition_modeling_and_vapour_smoothing_operations_for_biomedical_applications_(date_of_application_04.09.2025).)
3. Vilas J Kharat, Puran Singh, G Sharath Raju, Dinesh Kumar Yadav, M Satyanarayana.Gupta, Vanya Arun, Ali Hussein Majeed, Navdeep Singh, Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Materials Today: Proceedings, 2023, ISSN 2214-7853, <https://doi.org/10.1016/j.matpr.2023.11.033> (date of application 04.09.2025).
4. The_Effect_of_Printing_Orientation_on_the_Mechanical_Properties_of_FDM_3D_Printed_Parts Enabling Industry 4.0 through Advances in Manufacturing and Materials, Lecture Notes in Mechanical Engineering (pp.75-85). Publisher: Springer, Singapore. https://www.researchgate.net/publication/362937073_The_Effect_of_Printing_Orientation_on_the_Mechanical_Properties_of_FDM_3D_Printed_Parts (date of application 04.09.2025).
5. Alghaali, M.A., Almuzaini, S.A., Aljohani, R. et al. Impact of 3D printing orientation on accuracy, properties, cost, and time efficiency of additively manufactured dental models: a systematic review. *BMC Oral Health* **24**, 1550 (2024). <https://doi.org/10.1186/s12903-024-05365-5> (date of application 04.09.2025).
6. Tomasz Kozior, Jerzy Bochnia The Influence of Printing Orientation on Surface Texture Parameters in Powder Bed Fusion Technology with 316L Steel Micromachines (Basel). 2020 Jun 29;11(7):639. doi: 10.3390/mi11070639
7. Fábio Hideo Kaiahara, Eliane Cristina Gava Pizi, Fabiana Gouveia Straioto, Lucas David Galvani, Milton Carlos Kuga, Thalita Ayres Arrué, Ageu Raupp Junior, Marcus Vinícius Reis Só, Jefferson Ricardo Pereira, Hugo Vidotti Influence of Printing Orientation on the Mechanical Properties of Provisional Polymeric Materials Produced by 3D Printing (Polymers, 2025) <https://www.mdpi.com/2073-4360/17/3/265> (date of application 04.09.2025).

8. Atif Suhail Why Part Orientation Matters in 3D Printing https://www.azom.com/article.aspx?ArticleID=24438&utm_source=chatgpt.com (date of application 04.09.2025).
9. Márton Tamás Birosz, Ferenc Safranyik, Mátyás Andó Build orientation optimization of additive manufactured parts for better mechanical performance by utilizing the principal stress directions *Journal of Manufacturing Processes* Volume 84, December 2022, Pages 1094-1102 <https://doi.org/10.1016/j.jmapro.2022.10.038> (date of application 04.09.2025).

References

1. Adytyvne vyrobnytstvo: tekhnolohiia, materialy ta perevahy 3D-druku. URL: <https://makerly.eu/uk/adytyvne-vyrobnyctvo-tehnologiya-materialy-ta-perevagy-3d-druku/>
2. Jasgurpreet, S. C., Rupinder, S., Kamaljit S. B., Penna, R., & Fernando F. 2017, Dimensional accuracy analysis of coupled fused deposition modeling and vapour smoothing operations for biomedical applications. *Composites Part B: Engineering*, 117, 138-149. https://www.researchgate.net/publication/314275289_Dimensional_accuracy_analysis_of_coupled_fused_deposition_modeling_and_vapour_smoothing_operations_for_biomedical_applications
3. Vilas, J. K., Puran S., Sharath R., Dinesh K. Y., M Satyanarayana, V. A., Majeed, A. H., & Navdeep S. (2023). Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. <https://doi.org/10.1016/j.matpr.2023.11.033>.
4. Mohd Khairul Nizam, M.A.N.b., Ismail, K.I.b., Yap, T.C. (2022). The Effect of Printing Orientation on the Mechanical Properties of FDM 3D Printed Parts. In: Abdul Sani, A.S., et al. Enabling Industry 4.0 through Advances in Manufacturing and Materials. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-2890-1_8
5. Alghauli, M. A., Almuzaini, S. A., & Aljohani, R. et al. (2024). Impact of 3D printing orientation on accuracy, properties, cost, and time efficiency of additively manufactured dental models: a systematic review. *BMC Oral Health* 24, 1550 <https://doi.org/10.1186/s12903-024-05365-5>
6. Tomasz, K., & Jerzy B. (2020). The Influence of Printing Orientation on Surface Texture Parameters in Powder Bed Fusion Technology with 316L Steel Micromachines (Basel). 11(7), 639. <https://doi.org/10.3390/mi11070639>
7. Fábio, H. K., Eliane C. G. P., Straioto, F. G., Galvani L. D., Kuga M. C., Arrué, T. A. Ageu R. J., Só, M. V. R., & Pereira, J. R. H. (2025). Vidotti Influence of Printing Orientation on the Mechanical Properties of Provisional Polymeric Materials Produced by 3D Printing. <https://www.mdpi.com/2073-4360/17/3/265>.
8. Atif, S. Why Part Orientation Matters in 3D Printing https://www.azom.com/article.aspx?ArticleID=24438&utm_source=chatgpt.com.
9. Márton, T. B., Safranyik, F., & Andó, M. (2022). Build orientation optimization of additive manufactured parts for better mechanical performance by utilizing the principal stress directions. *Journal of Manufacturing Processes*, 84, 1094-1102. <https://doi.org/10.1016/j.jmapro.2022.10.038>.

Надіслано до редакції / Received: 30.07.2025

Прийнято до друку / Accepted: 08.12.2025

Романько Я.В., Мешкова А.Г., Гупало О.В.

Дослідження роботи компактного регенератора з різними насадками

Український державний університет науки і технологій, м. Дніпро, Україна

Romanko Y.V., Meshkova A.G., Gupalo O.V.

Study of the operation of a compact regenerator with different nozzles

Ukrainian State University of Science and Technologies, Dnipro, Ukraine

Анотація. Об'єкт дослідження – процеси теплообміну в робочому просторі насадки високотемпературного компактного регенеративного теплообмінника в димовий та повітряний періоди.

Мета дослідження – визначення впливу характеристики різних теплоакумулюючих насадок регенератора на теплову ефективність його роботи та визначення робочих характеристик регенератора при комбінуванні насадок різних типів. За допомогою математичної моделі досліджено роботу компактного регенеративного теплообмінника з різними типами насадок в умовах використанні його сумістно з пальником в системі опалення високотемпературного теплотехнічного агрегата. Виконані розрахунки роботи регенератора з кульковою насадкою, зі стільниковою насадкою і з насадкою, що складається з шару куль і пористих керамічних блоків.

Ключові слова: регенератор, насадка, теплообмін, теплообмінник, математичне моделювання.

Abstract. The object of the study is the heat exchange processes in the working space of the nozzle of a high-temperature compact regenerative heat exchanger in the smoke and air periods. The purpose of the study is to determine the influence of the characteristics of various heat-accumulating nozzles of the regenerator on the thermal efficiency of its operation and to determine the operating characteristics of the regenerator when combining nozzles of different types. Using a mathematical model, the operation of a compact regenerative heat exchanger with different types of nozzles was investigated under the conditions of its use together with a burner in the heating system of a high-temperature heat-technical unit. Calculations of the operation of the regenerator with a ball nozzle, with a honeycomb nozzle and with a nozzle consisting of a layer of balls and porous ceramic blocks were performed.

Key words: regenerator, nozzle, heat exchange, heat exchanger, mathematical modelling.

Вступ. Застосування регенеративних пальників у печах різного типу дозволяє за рахунок глибокої утилізації тепла димових газів досягти значної економії палива. Невід'ємною частиною даного пристрою є компактний регенератор.

Аналіз літературних джерел та постановка проблеми. В якості насадки такого регенератора добре себе зарекомендували керамічні кульки [1]. Кулькова насадка легко очищається від забруднень, має високу стійкість до температурних перепадів, тому її можна багаторазово використовувати. Однак шар куль має великий гідравлічний опір, що вимагає додаткової тяги.

В даний час набувають поширення регенеративні пальники з керамічною стільниковою насадкою [2]. Така насадка має більш розвинену поверхню порівняно з кульковою. Її використання дає більш високу температуру підігріву повітря. У той же час через малі розміри осередків стільникова насадка схильна до забруднень різними відкладеннями, що виносять дим. Очищення такої насадки утруднене, тому що розміри комірок не перевищують 2-3 мм (рис. 1). Підвищена крихкість

тонкостінної кераміки також перешкоджає багаторазовому використанню стільникової насадки [3].

Для зменшення цих недоліків можливе застосування комбінованої насадки, що складається частково з шару куль і пористих керамічних блоків (рис. 2). Для дослідження порівняльних характеристик таких насадок було проведено математичне моделювання.

Методи дослідження. За основу була прийнята модель теплообміну в регенераторі з кульковою насадкою [4]. При цьому кожна частина комбінованої насадки розглядалася як однорідне середовище з постійною порізнистю, а теплообмін випромінюванням між частинками насадки був замінений ефективною теплопровідністю.

Теплова робота насадки складається з багаторазово повторюваних димового і повітряного циклів. Математична постановка задачі наведена нижче.

Для димового періоду:

- диференціальне рівняння теплообміну для шару:

$$\rho(1 - \varepsilon)C \frac{\partial t}{\partial \tau} = \alpha_{V_D}(t_D - t) + \lambda_{\text{еф}} \frac{\partial^2 t}{\partial x^2}, \quad (1)$$

- диференціальне рівняння теплообміну для диму:

$$-W_{d0}C_d \frac{\partial t_d}{\partial x} = \alpha_{V_d}(t - t_d), \quad (2)$$

початкові умови:

$$t(x, 0) = t_{0d}, \quad (3)$$

- граничні умови:

$$t_d(h, \tau) = t_{d0}. \quad (4)$$

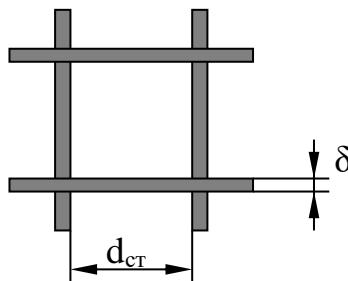


Рисунок 1. Комірка стільникової насадки

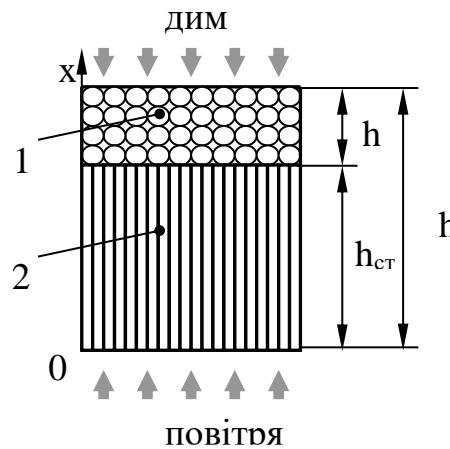


Рисунок 2. Схема регенератора з комбінованою насадкою

Для повітряного періоду:

- диференціальне рівняння теплообміну для шару:

$$\rho(1 - \varepsilon)C_p \frac{\partial t}{\partial \tau} = \alpha_{V_p}(t_p - t) + \lambda_{\text{еф}} \frac{\partial^2 t}{\partial x^2}, \quad (5)$$

- диференціальне рівняння теплообміну для повітря

$$W_{p0}C_p \frac{\partial t_p}{\partial x} = \alpha_{V_p}(t - t_p), \quad (6)$$

- граничні умови:

$$t_p(0, \tau) = t_{p0}, \quad (7)$$

де ρ – щільність матеріалу насадки;

ε – порізність насадки;

C – питома теплоємність матеріалу насадки;

t – температура шару;

τ – час;

α_{V_d} – об'ємний коефіцієнт тепловіддачі диму;

$t_d(x, \tau)$ – температура диму за висотою шару;

$\lambda_{\text{еф}}$ – ефективна теплопровідність шару;

W_{d0} – швидкість диму;

C_d – теплоємність диму;

h – висота регенератора;

t_{d0} – початкова температура диму;

α_{V_p} – об'ємний коефіцієнт тепловіддачі повітря;

$t_p(x, \tau)$ – температура повітря за висотою шару;

W_{p0} – швидкість повітря;

C_p – теплоємність повітря;

t_{p0} – початкова температура повітря.

Об'ємний коефіцієнт тепловіддачі диму та повітря для шару куль визначається з урахуванням їхньої масивності.

Для диму:

$$\alpha_{V_d} = \frac{\alpha_{F_d}}{1 + \frac{Bi}{5}} \cdot \frac{6(1 - \varepsilon)}{d_k}, \quad (8)$$

де α_{F_d} – поверхневий коефіцієнт тепловіддачі диму;

Bi – число Біо.

$$\alpha_{F_d} = \frac{Nu \cdot \lambda_d}{d_k}, \quad (9)$$

де Nu – число Нусельта;

λ_d – теплопровідність диму;

d_k – діаметр кульок.

Критерій Нусельта визначається за формулою [5]:

$$Nu = 0,61 \cdot Re^{0,67}, \quad (10)$$

де Re – число Рейнольдса,

$$Re = (W_d \cdot d_k) / U_d, \quad (11)$$

U_d – в'язкість диму.

$$Bi = \frac{\alpha_{F_d} \cdot d_k}{\lambda_k}, \quad (12)$$

λ_k – теплопровідність кульок.

Аналогічно розраховується коефіцієнт тепловіддачі для повітря з тією відмінністю, що всі параметри беруться для повітря.

Об'ємний коефіцієнт тепловіддачі диму та повітря для стільникової насадки визначається наступним чином.

Для диму:

$$\alpha_{V_d} = \alpha_{F_d} \cdot \frac{4}{d_{ct}}, \quad (13)$$

де d_{ct} – розмір комірки стільникової насадки.

$$\alpha_{F_d} = \frac{Nu \cdot \lambda_d}{d_{ct}}. \quad (14)$$

Для розвиненої ламінарної течії в каналах значення критерію Нуссельта можна прийняти рівним 3,66 [6].

Для насадок враховуємо перенесення тепла між ділянками шару. Цей процес можна приблизно замінити ефективною теплопровідністю, яка визначається в залежності від типу насадки.

Для кулькової насадки радіаційна провідність може бути знайдена за формулою [7]:

$$\lambda_{ef} = 4 \cdot f \cdot \sigma_0 \cdot d_k (t + 273)^3, \quad (17)$$

де f – параметр, який залежить від розміру, розташування та властивостей поверхні куль.

Гідравлічний опір насадки в залежності від її типу визначається такти чином [8].

Для стільникової насадки в димовий період:

$$\Delta P_{ct} = k \frac{h_{ct}}{d_{ct}} \cdot \frac{\rho_d \cdot W_d^2}{2}, \quad (18)$$

$$\text{де } k = \frac{64}{Re}. \quad (19)$$

Для кулькової насадки у димовий період

$$\Delta P_k = k \frac{h_k}{d_k} \cdot \frac{\rho_d \cdot W_d^2}{2}, \quad (20)$$

$$\text{де } k = \frac{1,53}{\omega^{4,2}} \left(\frac{30}{Re} \frac{3}{Re^{0,7}} \right) (0), \quad (21)$$

$$Re = \frac{0,45}{(1-\omega)\sqrt{\omega}} \cdot \frac{W_d \cdot d_k}{v_d}, \quad (22)$$

де ω – параметр, що залежить від взаємного розташування куль. Для рівномірного пакування

$\omega \approx 0,259$.

Система диференційних рівнянь 1 – 7 вирішуються методом кінцевих різниць за неявною схемою.

Результати дослідження. За допомогою розглянутої вище математичної моделі були проведені дослідження роботи теплообмінника для регенеративного пальника потужністю 270 кВт, що працює на природному газі з теплотою згоряння =35,5 МДж/м³, за наступних вихідних даних. Насадка регенератора складається з кульок діаметром $d_k=0,02$ м; розмір комірки стільникової насадки $d_{ct} = 0,0025$ м; насадки виготовлені з корунду; початкова температура насадки $t_0=0$ °C; висота регенератора $h = 0,4$ м; початкова температура диму $t_{d,0} = 1000$ °C; початкова температура повітря $t_{pov,0} = 0$ °C; швидкість диму та повітря $W_d = W_{pov} = 0,6$; тривалість одного димового або повітряного періоду $t_c=30$ с.

Виконані розрахунки температури підігріву повітря в регенераторі з кульковою та стільниковою насадкою з різними розмірами кульок та стільників (рис. 3). Для цих випадків розраховані гідравлічні опори (рис. 4).

При збільшенні визначального розміру від $d_k = 2,5$ мм до $d_k = 20$ мм температура підігріву повітря в кульковій насадці знижується з $t_{pov} = 908$ °C до $t_{pov} = 765$ °C. Для стільникової насадки при цьому температура підігріву повітря падає більш значно і становить $t_{pov} = 870$ °C при $d_{ct}=2,5$ мм до $t_{pov} = 356$ °C при $d_{ct}=20$ мм. Однак при цьому гідравлічний опір регенератора з кульковою насадкою на порядок вищий, ніж стільниковий.

Розігрів насадки до початку роботи у стаціонарному режимі зайняв за розрахунком 45 хвилин. Усі подальші результати наведені до роботи регенератора в стаціонарному режимі.

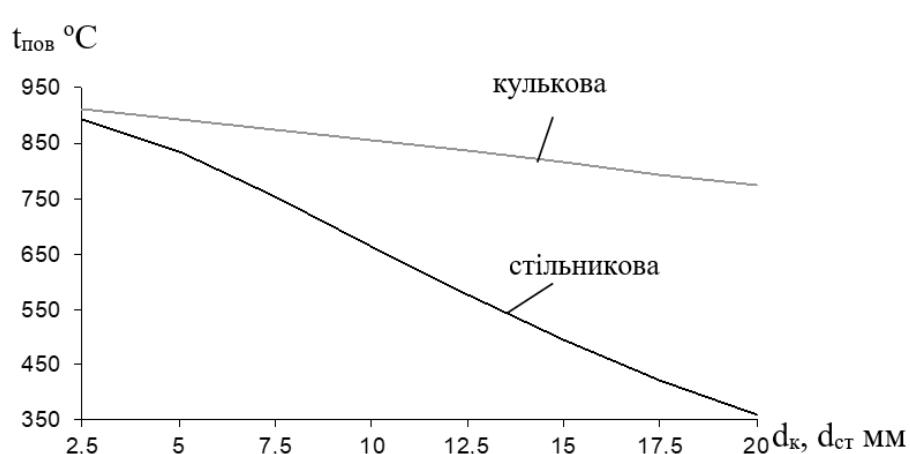


Рисунок 3 . Температура підігріву повітря в кульковій та стільникової насадках залежно від розміру кульки d_k та комірки d_{ct}

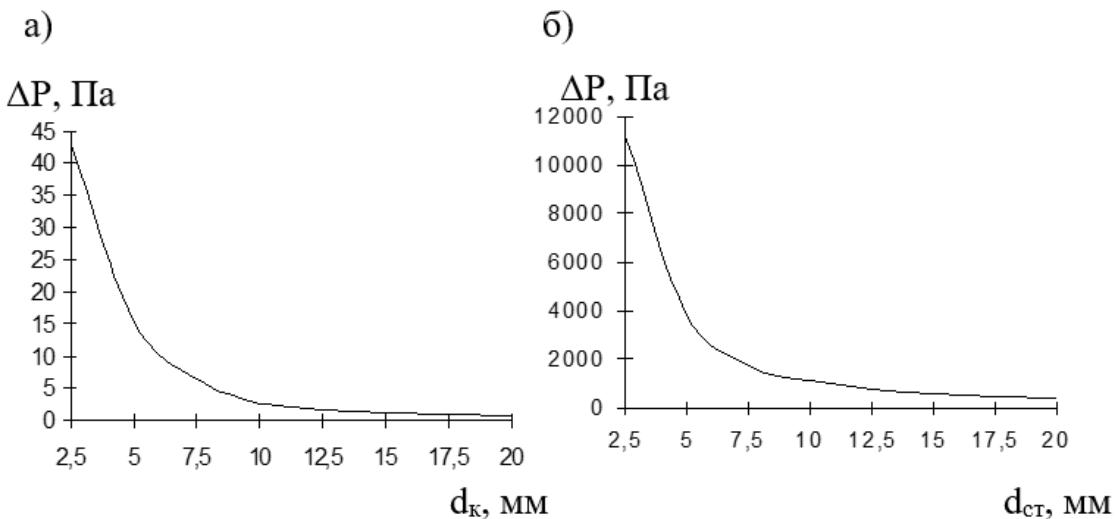


Рисунок 4. Зміна гідравлічного опору кулькової (а) та стільникової (б) насадок залежно від розміру кульок d_k і комірок d_{ct}

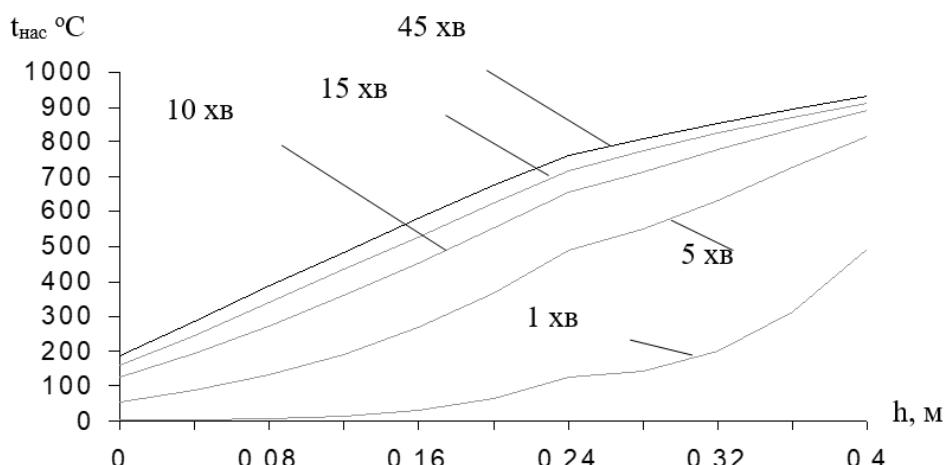


Рисунок 5. Розподіл температури насадки по висоті в різний момент часу

На рис.5 зображено графік розподілу температури насадки наприкінці димового періоду через 1, 5, 10, 15, 45 хвилин після початку роботи регенератора. З рис.5 видно, що протягом інерційного періоду при кожному наступному циклі швидкість розігріву насадки значно знижується. Коли насадка розігріта до стаціонарного стану, розподіл

температури за висотою регенератора для кожної частини насадки носить лінійний характер.

На рис. 6 зображено графік розподілу температури диму та повітря по висоті регенератора при $h_{ct}/h=0,6$. На рис.7 показано зміну температурі підігріву повітря залежно від відношення h_{ct}/h для регенераторів різної довжини.

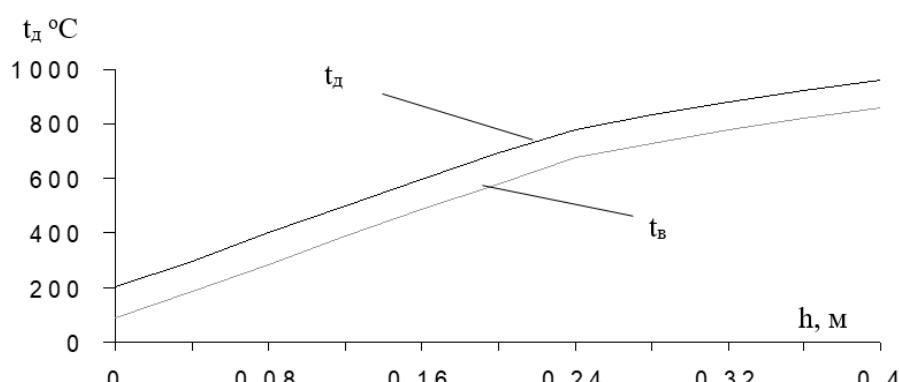
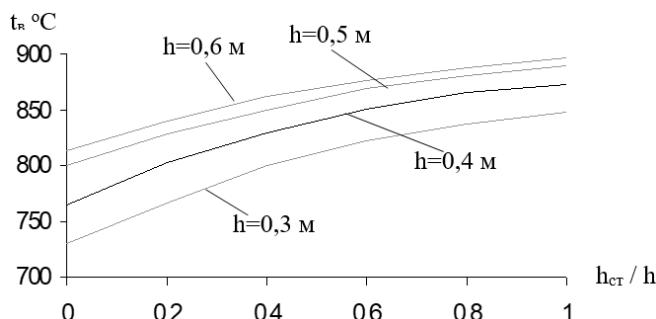



Рисунок 6. Зміна температури диму і повітря по висоті регенератора при $h_{cm}/h=0,6$

Рисунок 7. Зміна температури підігріва повітря в залежності від співвідношення h_{ct}/h .

Гідравлічний опір стільникової насадки при тому самому визначальному розмірі на порядок нижче кулькової. Це дає можливість застосовувати на практиці пористі керамічні блоки з розміром комірки 2-3 мм. Заміна кулькової насадки на стільникову дозволить підвищити температуру підігріву повітря приблизно на 100°C.

Комбінована насадка займає проміжне місце за ефективністю між стільниковою та кульковою. Вибір оптимального співвідношення між елементами комбінованої насадки залежить від експлуатаційних умов роботи регенератора.

Перелік посилань

- Ганжа, А. И., Заец Е. Н. Анализ эффективности теплообменников утилизаторов теплоты энергетических комплексов и агрегатов. Вісник НТУ «ХПІ». 2016. №10 (1182). С. 56-60.
- Toshiaki Hasegawa, Sumiyuki Kishimoto and Yutaka Suzukawa. Environmentally-compatible Regenerative Combustion Heating System. The Second International Seminar on High Temperature Combustion in Stockholm, Sweden, Royal Institute of Technology, 17-18 January 2000.
- Poo Min Park, Han Chang Cho and Hyun Dong Shin. Unsteady thermal flow analysis in a heat regenerator with spherical particles. Int. J. Energy Research. 2003; 27. - pp.161-172.
- Экспериментальное исследование тепловых характеристик высокотемпературного теплообменника с плотным слоем шариковой насадки. // Есікава и др. Труды ASME, серия С, Теплопередача, 1985, №3, с. 198-202.
- Исследование работы шарикового регенератора для регенеративных горелок.// Розенгарт Ю.И.;Шевченко Г.Л.; Губинский М.В. и др. Сборн. научн. тр. Металлургическая теплотехника. Т.1, Днепропетровск: ГМетАУ, 1999.- с. 150–153.
- Т. Себиси, П. Брэдшоу. Конвективный теплообмен. М. «Мир». 1987. – 590 с.
- Расчет теплообмена излучением в слое случайно упакованных шаров методом Монте-Карло.//Ян; Хауэлл; Клейн. Труды ASME, серия С, Теплопередача, № 2, 1983.- с. 112–119.
- Идельчик И.Е. Справочник по гидравлическим сопротивлениям. М. Машиностроение. 1975.- 570 с.

Reference

- Hanzha, A. Y., & Zaets, E. N. (2016). Analyz effektyvnosty teploobmennyykovutylzatorov teploti enerhotechnolohcheskykh kompleksov y ahrehatov. Visnyk NTU "KhPI", 10(1182), 56-60.
- Toshiaki H., Sumiyuki, K., & Yutaka Suzukawa. (2000). Environmentally-compatible Regenerative Combustion Heating System. The Second International Seminar on High Temperature Combustion in Stock-holm, Sweden, Royal Institute of Technology, 17-18 January 2000.
- Poo M. P., Han, C. C., & Hyun, D. S. (2003). Unsteady thermal flow analysis in a heat regenerator with spherical particles. Int. J. Energy Research.,27, 161-172.
- Esikava et al. (1985). Trudy ASME, seriiia S. Teploperedacha, (3), 198-202.
- Rozengart, Iu. I., Shevchenko, G. L., & Gubinski, M. V. et al. (1999). Issledovanie raboty sharikovogo regeneratora dlia regenerativnykh gorelok. Sborn. nauchn. tr. Metallurgicheskaiia teplotekhnika. T.1.
- Sebisi, T., & Bredshou, P. (1987). Konvektivnyi teploobmen. "Mir".
- Ian, Khauell, & Klein. (1983). Raschet teploobmena izlucheniem v sloe sluchaino upakovannykh sharov metodom Monte-Karlo. Trudy ASME, seriiia S, Teploperedacha, (2), 112-119.
- Ydelchik, Y. E. (1975). Spravochny po hydralvlycheskym soprotivleniyam.. Mashynostroenye.

Надіслано до редакції / Received: 17.08.2025

Прийнято до друку / Accepted: 08.12.2025

Усенко Р.В., Баркар Р.Р., Шемет В.Ю., Таранов А.А., Білій А.П., Якименко Д.Ю.

Використання золи-виносу у складі формувальних залізофосфатних холоднотвердіючих сумішей

Український державний університет науки і технологій, м. Дніпро, Україна

Usenko R.V., Barkar R.R., Shemet V.Yu., Taranov A.A., Bilyi A.P., Yakymenko D.Yu.

The use of fly ash as a part of the forming ironphosphate cold-hardening mixes

Ukrainian State University of Science and Technologies, Dnipro, Ukraine

Анотація. Мета. Застосування в складі формувальних та стрижневих сумішей золи-виносу як часткового замінника кварцового піску. **Методика.** Методики визначення основних технологічних параметрів форм і стрижнів, відповідають застосуванням на профільному виробництві. **Результати.** Розроблено склади багатокомпонентних залізофосфатних формувальних ХСТ на основі дисперсних техногенних матеріалів, ву якості заміни традиційно використовуваних матеріалів. **Наукова новизна.** Визначили можливості використання, в свіжих та регенерованих холоднотвердіючих залізофосфатних сумішах, золи-виносу у якості наповнювача та/або стабілізатора гранулометричного складу. **Практична значущість.** Застосування техногенних матеріалів у якості заміни традиційно використовуваних, дозволить знизити витрати на виробництво литва та покращити екологічну ситуацію в регіоні розташування ливарного цеху.

Ключові слова: форма, стрижень, залізофосфат, зола-виносу.

Abstract. Purpose. Use of fly ash in the composition of molding and core mixtures as a partial substitute for quartz sand. **Methodology.** Methods for determining the main technological parameters of molds and cores correspond to those used in specialized production. **Findings.** Compositions of multicomponent iron phosphate molding CTS based on dispersed technogenic materials have been developed as a replacement for traditionally used materials. **Originality.** The possibilities of using fly ash in fresh and regenerated cold-hardening iron phosphate mixtures as a filler and/or a stabilizer of the granulometric composition have been identified. **Practical value.** The use of technogenic materials as a replacement for traditionally used ones will reduce the costs of casting production and improve the environmental situation in the region where the foundry is located.

Keywords: form, core, iron phosphate, flow ash.

Вступ. На даний час, в умовах обмеженого доступу до природних ресурсів, актуальною проблемою ливарного виробництва є заміна традиційних формувальних матеріалів на більш доступні і дешеві матеріали техногенного походження. В ливарних цехах найбільш доступними і найчастіше використовуюємими є техногенні матеріали, які додають в формувальні та стрижневі суміші. Таке використання матеріалів техногенного походження призводить до покращення екологічної ситуації у регіоні та зменшенню об'єму та прощі яку займає сховище відповідних матеріалів[1].

До складу сучасних формувальних та стрижневих сумішей можуть входити техногенні матеріали різного походження: прокатна залізна окалина, зола-виносу теплових електростанцій (ТЕС), деревна тирса або вугілля та інші матеріали різної дисперсності та походження [1, 2]. Їх застосування дозволяє отримати значні економічні та технологічні переваги за рахунок зниження собівартості іскорочення тривалості технологічного циклу виготовлення форм та стрижнів.

Аналіз літературних даних та постановка проблеми. Аналіз літературних джерел [2–9] показав, що оптимальне використання властивостей золи-виносу дозволяє впливати на основні технологічні характеристики формувальної суміші – термостійкість, міцність, газопроникність. Крім того наведені матеріали дозволяють впливати на гранулометричний склад, адгезію суміші до моделі, міцність зв'язку між частинками складу тощо.

Відомо, що техногенні продукти у ряді випадків не тільки не поступаються за своїми характеристиками традиційним формувальним матеріалам, а й перевершують їх за низкою показників. При цьому важливу роль у якості таких сумішей відіграє її сполучний матеріал [3–7].

Технології, що традиційно застосовують для усунення вище викладених факторів – промивання, плакування, механічна, хімічна та інші методи активації сумішей, мають недоліки, такі як: збільшення тривалості технологічного циклу, додаткова витрата матеріалів, громіздкість обладнання, і т.д. [2–9]. В даній роботі зроблено припущення, що

введення золи-виносу дозволить збалансувати їх взаємний вплив та отримати оптимальні технологічні показники суміші інформація про що на сьогодні відсутня. Тому робота, що направлена на розробку рекомендацій щодо використання матеріалів техногенного походження, зокрема золи-виносу, в технологіях ливарних цехів є актуальною.

Мета і завдання дослідження. Мета роботи – застосування в складі формувальних та стрижневих сумішей золи-виносу як часткового замінника кварцового піску.

Завдання досліджень – визначити можливості використання в свіжих та регенерованих холоднотвердіючих залізофосфатних сумішах (залізофосфатні ХТС) золи-виносу у якості дисперсного наповнювача або стабілізатора їх гранулометричного складу.

Матеріали та методи дослідження.

Випробування проводили на стандартних зразках відповідно до ГОСТ 23409.7-78 (табл. 2). Живучість досліджуваних формувальних складів становила 20–35 хвилин, що з застосуванням розчину ортофосфорної кислоти низької щільності

$\rho = 1,1 \text{ г/см}^3$, а також введенням інгібітору твердиння – уротропіну та ПАР – сульфанол [10, 11].

Вимірювання температури проводили: термометрами занурення, хромель-алюмелевою або вольфрам-ренієвою термопарами в комплекті з потенціометром КСП-4. Розміри вимірювали з точністю 0,01 мм. Масу вимірювали з точністю до 0,01 або 0,1, газопроникність – на приборі мод. 042, по загально прийнятій методиці, рентгеноструктурні дослідження проводили на дифрактометрі ДРОН-3. Щільність вимірювали методом гідростатичного зважування у дистильованій воді, хімічний склад визначали спектрооптичним методом на спектрометрі «SpectromaxX» з відповідним програмним забезпеченням.. Обробку експериментальних даних і оцінювання їх на наявність грубих помилок здійснювали методом кореляційно-регресійного аналізу та правила «трьох сигм», використовуючи електронно-обчислювальну техніку та пакети стандартних комп'ютерних програм.

Результати дослідження. Вибір залізо фосфатних ХТС базується на хімічному складі золи-виносу Придніпровської ТЕС, наведеному у таблиці 1.

Таблиця 1 – Хімічний склад золи-виносу, мас. % [5]

SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	MgO	SO ₃	FeO	R ₂ O	TiO ₂	ВПП при 1000°C
48,1	23,4	7,2	2,3	1,1	0,7	0,8	2,7	0,5	13,2

Результати хімічних досліджень [8, 9] свідчать, що зола-винос за своїм хімічним складом (див. табл. 1) задовільняє вимогам, що пред'являють до компонентів формувальних сумішей, і може бути додатковим компонентом сполучного матеріалу. При кімнатній температурі додаткове змінення такої суміші забезпечуватимуть у - Fe₂O₃ та MgO, а

при її нагріванні – Al₂O₃ [6–9], які входять до складу золи-виносу.

Частинки золи виносу мають різноманітну форму – від кулястої до форми конгломерату, про що свідчить типовий вигляд частинок золи-виносу представлений рис. 1.

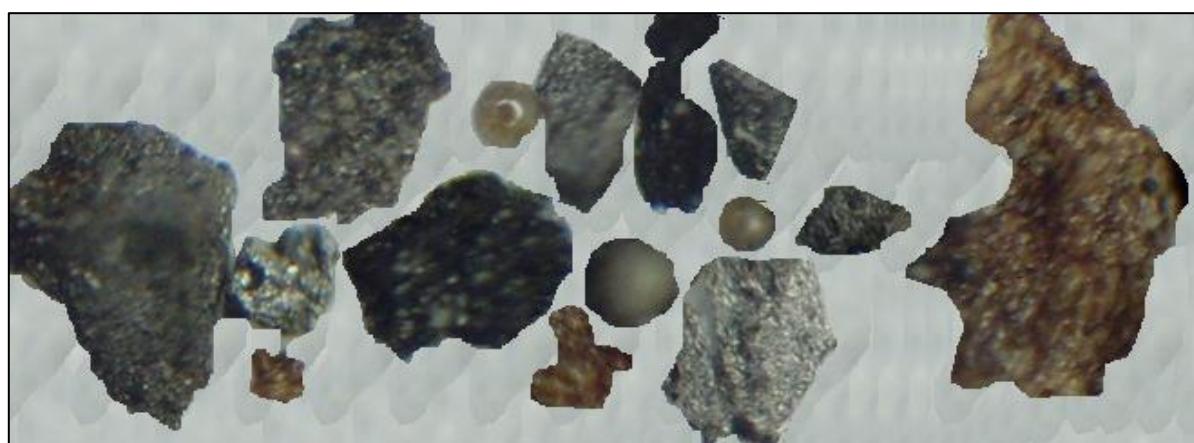


Рисунок 1 – Вигляд частинок золи, $\times 200$

Різноманітність форми частинок золи-виносу не погіршує чистоти поверхні виливків у зв'язку з тим, що розмір частинок золи-виносу у 10 та більше разів менший за розміри піщаник кварцового піску. При цьому, використовуючи золу-винос слід

враховувати високий вміст оксидів металів у цьому матеріалі, який вимагає коригування вмісту компонентів у формувальній суміші.

Виходячи з цього в роботі дослідили властивості різноманітних складів формувальних сумішей у

складі яких масова доля золи-виносу досягала 10%.

Відповідно до прийнятої методики, перед використанням золу-винос просушували на повітрі при 22...27 °C впродовж доби після чого просіювали на ситі з величиною комірки 0,315 мм для видалення великих часток та органічних включень.

Вміст залізної окалини та золи-виносу

обумовлено гранулометричним складом суміші, реакційною здатністю компонентів та їх питомою поверхнею.

Міцність затверділих зразків на стиск визначали при 20 °C і при 250 °C.

Результати визначення міцності затверділих зразків на стиск представлено в таблиці 2.

Таблиця 2 – Склад та міцність зразків сумішей на стиск

№ складу	Масовий вміст компонентів компонентов, %				Міцність зразків на стиск після сушіння, МПа		Газопроникність при 20 °C, од
	Пісок	Окалина	Зола-винос	H ₃ PO ₄ *	при 20 °C	при 250 °C	
1.1	93,9	6	-	4,5	0,35	0,18	246
1.2	92,9	7	-	4,5	0,28	0,28	274
1.3	91,9	8	-	4,5	0,20	-	313
2.1	83,9	6	10	4,5	0,21	-	183
2.2	82,9	7	10	4,5	0,28	0,43	163
2.3	81,9	8	10	4,5	0,44	0,60	141
2.4	84,9	5	10	4,5	0,29	0,20	124
3.1	83,9	6	10	6,5	0,52	0,24	222
3.2	82,9	7	10	6,5	0,405	3,55	197
3.3	85,9	5	8	6,5	-	-	-

* – У водний розчин H₃PO₄ додавали 0,01% уротропін тасульфанол.

Зразки № 1.3 та 2.1 було виключено з подальших вимірювань через низьку міцність, а зразок № 3.3 через неможливість отримання зразка придатного для проведення вимірювань. Зразки № 1.1, 1.2 та 1.3 без використання золи-виносу, але з використанням у якості сполучного компонента окалини заліза були використані для проведення порівняльного аналізу.

Обговорення результатів. Результатами досліджень дозволили визначити вплив золи-виносу на технологічні характеристики та у подальшому скорегувати раціональний вміст компонентів у досліджуваній суміші.

Встановлено, що збільшення вмісту золи-виносу у формувальній суміші призводить до збільшення міцності у 1,1 ... 2,8 рази, та кратному зниженню газопроникності. Тобто, газопроникність зразків зменшується на 4 ... 7 одиниць на кожен відсоток золи, але має прийнятні значення для використання при виробництві виливків простої конфігурації та оболонкових стрижнів.

Пропоновані склади сумішей мають прийнятні технологічні показники і можуть бути рекомендовані для випробування в промислового умовах. Однією з важливих переваг цих складів є те, що вони повністю складаються з екологічно безпечних та біорозкладних матеріалів.

Висновки.

1. Розроблено склади багатокомпонентних залізофосфатних формувальних ХТС на основі дисперсних техногенних матеріалів.
2. Застосування техногенних матеріалів, що входять до складу ХТС, у якості заміни традиційно використовуваних матеріалів, дозволить значно знизити витрати на виробництво літва.
3. Застосування золи-виносу дозволяє залучити до процесу і розпочати його дезактивацію, матеріал техногенного походження, який у своєму звичайному вигляді має негативний вплив на екологічну ситуацію в регіоні розташування ливарного цеху.

Перелік посилань

1. Не відходи, а ресурси: що робити з мільярдами тонн металургійних шлаків України: веб-сайт. URL: <https://ecopolitic.com.ua/ua/news/ne-vidhodi-a-resursi-shho-robiti-z-milyardami-tonn-metalurgijnih-shlakiv-ukraini/> (дата звернення: 04.12.2024).
2. В.Е. Хричиков, В.Ю. Селиверстов, В.Ф. Мазорчук, О.С. Наумов, Г.В. Фоменко, Р.В. Усенко. Промышленные отходы как альтернатива компонентам термостойких составов формовочных смесей // Металлургическая и горнорудная промышленность. – 2006. - №2. – С. 36-38.
3. Осипенко И.А., Белый А.П. Применение кремнеземистой тонкодисперсной пыли в составах холоднотвердеющих формовочных смесей. Экономический путь к высококачественному литью : тез. докл., Киев, 7-9 июня 2005 г. Киев, 2005. С. 126-127.
4. Осипенко И.А., Репях С.И. Применение тонко дисперсного кремнийсодержащего материала сухой газоочистки ферросплавного производства в формовочных смесях. Весник КГИУ. 2020. № 4 (31). С. 36–41.
5. Gupalo O., Vorobiova L., Osypenko I. Ring furnace regenerative heating system efficiency. Energy transformation in industry: 14th International Scientific Conference, September 23 – 25. Lubovna, 2015. С. 31–39.

6. Osypenko I. Properties of phosphatic cold hardening mixtures (CHM) with use of ferrosilicon finely dispersed dust, obtained in dry gas cleaning of ferroalloy furnaces. Energy transformation sin industry : 10th International Scientific Conference, june 13 – 15. Tatranska Strba, 2007. C. 268–271.

7. Osypenko, S. Shurapey. Properties of phosphatic cold hardening mixtures (CHM) with use of ferrosilicon finely dispersed dust. MATERIALS AND METALLURGY : 11th INTERNATIONAL SYMPOSIUM OF CROATIAN METALLURGICAL SOCIETY ŠIBENIK, JUNE 22 – 26. ŠIBENIK, 2014. C. 52.

8. Лютий Р.В., Гурія І.М., Кеуш Д.В., Надточій О.С. Розроблення технології виготовлення форм і стрижнів із суміші з ортофосфорною кислотою і солями натрію. Вестник ДГМА. 2013. №4 (29). С. 140–147.

9. Лютий Р.В., Гурія І.М., Кеуш Д.В., Анісимова О.А. Визначення оптимального складу стрижневих сумішей з новими зв'язувальними компонентами, які утворюються при взаємодії ортофосфорної кислоти з неорганічними солями алюмінію. Вестник ДГМА. 2013. № 2 (12Е). С. 17–24.

10. Уротропін: веб-сайт. URL: <https://uk.wikipedia.org/wiki/%D0%A3%D1%80%D0%BE%D1%82%D1%80%D0%BE%D0%BF%D1%96%D0%BD> (дата звернення: 04.12.2024).

11. Сульфаноп: основні властивості, методи використання та правила зберігання: веб-сайт. URL: <https://soda.kiev.ua/ua/sulfanol-osnovni-vlastyvosti-metody-vykorystannya-ta-pravyla-zberigannya.html> (дата звернення: 04.12.2024).

References

1. Ne vidkhody, a resursy: shcho robyty z mil'yardamy tonn metalurhiynykh shlakiv Ukrayiny: veb-sayt. <https://ecopolitic.com.ua/ua/news/ne-vidhodi-a-resursi-shho-robiti-z-milyardami-tonn-metalurgijnih-shlakiv-ukraini/>
2. Khrychikov, V. Ye., Seliverstov, V. YU., Mazorchuk, V. F., Naumov, O. S., Fomenko, G. V., & Usenko, R. V. (2006). Promyshlennye otkhody kak al'ternativa komponentam termostoykikh sostavov formovochnykh smesey. *Metallurgicheskaya i gornorudnaya promyshlennost*, (2), 36-38.
3. Osipenko, I. A., & Belyy, A. P. (2005, 7-9 iyunya). Primeneniye kremnezemistoy tonkodispersnoy pyli v sostavakh kholodnotverdeyushchikh formovochnykh smesey. *Ekonomicheskiy put k vysokokachestvennomu lityu*: tez. dokl., Kiyev, 126-127.
4. Osipenko, I. A., & Repyakh, S. I. (2020). Primeneniye tonkodispersnogo kremniysoderzhashchego materiala sukhoy gazoochistki ferosplavnogo proizvodstva v formovochnykh smesakh. *Vesnik KG/IU*, 4(31), 36-41.
5. Gupalo, O., Vorobiova, L., & Osypenko, I. (2015, September 23 – 25). Ring furnace regenerative heating system efficiency. Energy transformation sin industry: 14th International Scientific Conference, Lubovna, p. 31-39.
6. Osypenko, I. (2007, june 13 – 15). Properties of phosphatic cold hardening mixtures (CHM) with use of ferrosilicon finely dispersed dust, obtained in dry gas cleaning of ferroalloy furnaces. Energy transformation sin industry : 10th International Scientific Conference, Tatranska Strba, p. 268-271.
7. Osypenko, S. (2014, june 22 – 26). Shurapey. Properties of phosphatic cold hardening mixtures (CHM) with use of ferrosilicon finely dispersed dust. materials and metallurgy: 11th international symposium of croatian metallurgical society Šibenik, Šibenik, p. 52.
8. Lyutyy, R. V., Huriya, I. M., Keush, D. V., & Nadtochiy, O. S. (2013). Rozrobлення tekhnolohiyi vyhotovlennya form i stryzhniiv iz sumishey z ortofosfornoju kyslotoyu i solyamy natriyu. *Vestnyk DHMA*, 4(29), 140-147.
9. Lyutyy, R. V., Huriya, I. M., Keush, D. V., & Anisimova, O. A. (2013). Vyznachennya optymal'noho skladu stryzhnevykh sumishey z novymy zv'yazuval'nymy komponentamy, yaki utvoryuyut'sya pry vzayemodiyi ortofosfornoj kysloty z neorhanichnymy solyamy alyuminiyu. *Vestnyk DHMA*, 2(12E), 17-24.
10. Urotropin: Web-site: <https://uk.wikipedia.org/wiki/%D0%A3%D1%80%D0%BE%D1%82%D1%80%D0%BE%D0%BF%D1%96%D0%BD>.
11. Sulfanop: osnovni vlastyvosti, metody vykorystannya ta pravy lazberihannya: Web-site: <https://soda.kiev.ua/ua/sulfanol-osnovni-vlastyvosti-metody-vykorystannya-ta-pravyla-zberigannya.html>.

Надіслано до редакції / Received: 08.07.2025
Прийнято до друку / Accepted: 08.12.2025

Леоха Ф.Л., Хричиков В.Є.

Сучасні тенденції у виробництві і застосуванні титанових сплавів

Український державний університет науки і технологій, м. Дніпро, Україна

Leokha F.L., Khrychikov V.E.

Current trends in the production and application of titanium alloys

Ukrainian State University of Science and Technologies, Dnipro, Ukraine

Анотація. *Мета: Аналіз стану наукових досліджень у галузі виробництва і застосуванні титанових сплавів та тенденцій їхнього розвитку протягом останніх 20 років. Методика: Нарративний огляд і аналіз літератури з найактуальнішими публікаціями у відкритих джерелах Google Scholar, Sciedirect, Researchgate, Scopus. Результати: Титан вирізняється міцністю, малою щільністю, корозійною стійкістю, біосумісністю та термостійкістю, що робить його важливим для промисловості. Створено понад 100 титанових сплавів, з яких комерційного статусу досягли лише 20–30. Найпоширеніший – Ti-6Al-4V (понад 50% застосувань), ще 20–30% – сплави чистого титану. Вони використовуються в аерокосмічній, медичній, автомобільній та хімічній сферах. Металургія титану базується на вакуумнодуговому і електронно-променевому переплаві, промеється активний пошук альтернативних технологій, наприклад електрошлаковий переплав титанових сплавів. Також активно впроваджуються адитивні технології. Наукова новизна полягає в комплексному узагальненні сучасних досліджень, які стосуються виробництва і застосування титанових сплавів із акцентом на сучасні методи переплаву титанової шихти у готовий виріб. Публікація включає найактуальніші джерела, яких ще немає в інших оглядах. Практична значущість. Публікація допоможе науковцям, інженерам, викладачам, студентам швидко зорієнтуватися в масиві існуючих знань, уникнути дублювання досліджень та краще планувати подальшу діяльність.*

Ключові слова: титан, сплави, механічні властивості, біосумісність, корозійна стійкість, галузь, переплав, адитивне виробництво.

Abstract. Purpose: Analysis of the state of scientific research in the field of production and application of titanium alloys and trends in their development over the past 20 years. Methodology: Narrative review and analysis of the literature with the most current publications in open sources Google Scholar, Sciedirect, Researchgate, Scopus. Results: Titanium is distinguished by its strength, low density, corrosion resistance, biocompatibility and heat resistance, which makes it important for industry. More than 100 titanium alloys have been created, of which only 20–30 have reached commercial status. The most common is Ti-6Al-4V (over 50% of applications), another 20–30% are pure titanium alloys. They are used in the aerospace, medical, automotive and chemical sectors. Titanium metallurgy is based on vacuum arc and electron beam remelting, but an active search for alternative technologies continues, such as electroslag remelting of titanium alloys. Additive technologies are also being actively introduced. The scientific novelty lies in the comprehensive generalization of modern research related to the production and application of titanium alloys with an emphasis on modern methods of remelting titanium charge into a finished product. The publication includes the most relevant sources that are not yet available in other reviews. Practical significance. The publication will help scientists, engineers, teachers, and students to quickly navigate the array of existing knowledge, avoid duplication of research, and better plan further activities.

Keywords: titanium, alloys, mechanical properties, biocompatibility, corrosion resistance, industry, remelting, additive manufacturing.

Titanium and its main properties

Titanium was discovered in 1791 by the amateur mineralogist W. Gregor, but it took almost 150 years before its industrial production began [1]. This significant gap between the discovery of a new metal and its use is not accidental, because titanium is an extremely chemically active element. To reduce it from titanium oxide (TiO_2), it is necessary to first chlorinate titanium and obtain $TiCl_4$. Then purify $TiCl_4$ by fractional distillation and finally reduce $TiCl_4$ with molten magnesium or sodium in an argon atmosphere (Fig. 1) [2, 3]. This process was proposed by metallurgist W. Kroll in 1937 and remains the main one in the production of titanium

sponge – a hollow metal raw material that is subsequently processed into titanium using remelting processes of special electrometallurgy (Fig. 1, 2). There are innovative modern processes (FFC, OS, MHR, MIT) that reduce titanium directly from TiO_2 [3, 4].

The high affinity of molten titanium for oxygen, nitrogen and hydrogen requires that melting and pouring be carried out in a vacuum. Vacuum arc or electron beam melting furnaces are commonly used with a consumable electrode made from blocks of pressed titanium sponge, which are connected together by argon arc welding. For casting, the range of forming materials is limited due to the reactivity of titanium, but copper

water-cooled crucibles or pressed graphite are commonly used [2]. Vacuum induction [6] and chamber electroslag processes [7] are also used for remelting titanium.

The high affinity of molten titanium turns sour, it absorbs nitrogen and water so that the melting and pouring can be condensed in a vacuum. Use vacuum-arc or electron-exchange melting furnaces with a vitriol electrode made from blocks of pressed titanium sponge, which are interconnected by argon-arc welding. To cast a range of forming materials, they are formed through the reaction of titanium, or use copper water-cooled crucibles and press graphite [2]. Also, for remelting titanium used vacuum-induction [6] and chamber electroslag process [7].

The complexity and multi-stage nature of the

Fig. 1 – Chlorination of titanium. Zaporizhia Titanium-Magnesium Plant

Titanium is a relatively poor conductor of electricity compared to materials such as copper or aluminum, making it useful for applications where electrical insulation is required. In certain medical applications, such as implanted medical devices, titanium's low electrical conductivity may be useful in preventing unwanted electrical interactions with body tissues [8].

Due to its affinity for oxygen, titanium spontaneously forms a protective oxide layer on the surface when exposed to an oxidizing environment. In biomedical applications, the presence of a natural oxide layer plays a crucial role in biocompatibility, as it forms a barrier between the biological environment and the "reactive" metal underneath [9]. Moreover, bone tissue can adhere and grow on the surface of titanium alloys until complete integration [10]. Titanium and its alloys are generally considered non-toxic and do not release harmful substances into the body. There are some concerns about the potential toxicity of several alloys due to the presence of aluminum, vanadium, and nickel [10, 11].

Titanium alloys demonstrate impressive mechanical strength and stiffness, reaching ultimate loads comparable to those of some steel grades [8].

Titanium alloys

Alloying elements play a key role in shaping the properties of titanium alloys. Traditionally, titanium alloying elements are divided into two groups depending on the phase they seek to stabilize: alpha (α) and beta

casting process for titanium is offset by its outstanding physical and chemical properties. Titanium has a relatively low density of about 4.54 g/cm^3 , which is about half the density of steel or cobalt alloys. This low density makes it suitable for applications where weight reduction is important, such as aerospace and medical implants [8]. Titanium also has a high melting point of $\approx 1670^\circ \text{C}$, which allows the material to withstand high temperatures during manufacturing processes without losing its structural integrity. Titanium also has a low coefficient of thermal expansion, meaning it expands and contracts minimally with temperature changes. This property is advantageous for applications where dimensional stability is critical, such as precision medical devices [8].

Fig. 2 – Crushed titanium sponge [5]

(β). The α -phase has a hexagonal close-packed structure, and the β -phase has a body-centered cubic (bcc) structure. The distribution between these phases significantly affects the mechanical properties of the material.

Alloying with elements such as aluminum, tin, and zirconium stabilizes the α -phase, increasing strength and hardness and raising the beta transition temperature [12]. Elements such as molybdenum, tungsten, chromium, iron, silicon, and copper stabilize the β -phase, improving ductility and high-temperature properties, and lowering the beta transformation temperature. Vanadium and niobium can act as α - or β -stabilizers depending on the alloy composition. In addition, light elements such as oxygen and nitrogen also have an α -stabilizing effect and a neutral effect on the beta transition temperature [13].

Titanium alloys are usually classified into three main groups, designated α , α/β , and β . The main representatives of α -alloys are commercially pure (CP) titanium alloys, the alloying elements in which are oxygen and nitrogen, which in controlled amounts provide a certain range of titanium strength. Also included in α -alloys are titanium microalloyed with palladium and ruthenium [1]. Alpha alloys cannot be heat treated to improve mechanical properties, since they are single-phase alloys [5].

With a sufficient level of β -favorable elements, a β -phase is formed in the alloy. The resulting structures

are representatives of α/β -alloys. Compared to α -alloys, they are distinguished by high strength combined with improved ductility. The microstructure and properties of α/β -alloys can be changed by heat treatment [5]. An example of an α/β alloy is Ti-6Al-4V, which is the most widely used titanium alloy [1]. This alloy is the benchmark that researchers use to create new, cheaper titanium alloys, while the mechanical properties should not be worse than those of Ti-6Al-4V [4].

Beta titanium alloys require the addition of sufficient β -stabilizing elements such as vanadium. Beta structures should generally be called metastable beta structures. These are alloys that retain essentially the beta structure when cooled to room temperature. One example of this group is Ti-13V-11Cr-3Al [1, 14].

Today, more than 100 titanium alloys are known, of which, however, only 20–30 have reached commercial status. Of these, the classic Ti-6Al-4V alloy covers more than 50% of the use, another 20–30% are commercially pure titanium alloys [15]. It should be noted that the development of new titanium alloys has reached a new level as a result of the application of the experimental method of high-performance multiple diffusion and machine learning using neural networks. It is believed that this approach will allow the development of high-performance titanium alloys [4].

Applications of titanium alloys

Titanium and its alloys are widely used in many industries. The choice of these materials is based on the main advantages of titanium alloys: corrosion

Fig. 3 – SR71 reconnaissance aircraft (first use of β -Ti alloys [5])

The high corrosion resistance of titanium is the reason for its use in the petrochemical and marine industries [4]. For this purpose, technically pure titanium alloys are usually used, which are corrosion-resistant but have low strength. They are used in tanks, heat exchangers, reactor vessels, for parts of chemical processing, desalination and power generation equipment [17].

In the military field, armor must be subjected to intense shock loads caused by explosions and collisions at hypervelocity, etc. Research is currently underway on the response of titanium alloys to shock, especially

resistance, strength, biocompatibility [16]. The applications of titanium are described below.

The aerospace industry (Fig. 3) is the main application of titanium alloys, in particular, in engine systems and housings, titanium alloys cover 36% and 7% of the mass of parts, respectively. In the USA, about 70-80% of all orders for titanium alloys fall on the aerospace industry [16]. The most important reason for the widespread use of these alloys in the aerospace industry is their high strength-to-weight ratio [4], as well as corrosion resistance [16].

The automotive industry began using titanium and titanium alloys for engine parts of racing cars as early as 1980. However, due to the high cost of these materials, their application has been limited. However, in recent years, titanium and its alloys have been intensively used for the manufacture of various automotive parts [16].

Titanium alloys are widely used in biomedical implants (Fig. 4). This is due to their reduced elasticity, high biocompatibility and increased corrosion resistance compared to conventional stainless steel and Co-Cr alloys. Technically pure titanium (Gr-1, 2, 3, 4) and Ti-6Al-4V alloy are the most widely used titanium materials in medicine [16]. The scope of application of β -titanium alloys in biomedicine is expanding, covering dental implants, joint replacement parts, surgical instruments, etc. [17]. Currently, there have been experiments on the use of porous implants manufactured by additive manufacturing methods, which show good results of compatibility with human tissues [18].

Fig. 4 – Components of a hip joint made of titanium [15]

regarding the microstructural evolution during shock pulses and its effect on mechanical properties [4, 19].

The ability to form various types of attractive/brilliant color shades on the surface during anodizing has led to its use in artificial jewelry and various types of consumer goods: watch bracelets, ornaments, sports equipment, etc. [4].

Methods of processing titanium into a finished product

Vacuum arc remelting (VAR) has been the main method of producing titanium ingots since the commercial introduction of titanium alloys in the 1950s and

remains so today. VAR is a process used to remelt titanium and is carried out in a vacuum using an electric arc (Fig. 5). A cylindrical electrode, consisting of welded blocks of pressed titanium sponge and alloying materials and scrap, is melted by an arc in a vacuum. Subsequently, the liquid titanium solidifies in a copper water-cooled crucible under conditions of directional crystallization. This process provides a high melting rate of titanium, high metal quality due to the removal of gases (oxygen, nitrogen, hydrogen) and non-metallic inclusions, uniformity of structure due to multiple remelting, and effective elimination of defects in the starting material. VDP has many advantages, including high purity, good control and reproducibility [5]. However, the process is performed in a vertical position, which can cause segregation of alloy elements due to gravity [1].

Titanium ingots produced by VAR are about 100 cm in diameter and weigh up to 10-15 tons [1]. Larger ingots are more economical, since losses during the

Fig. 5 – Vacuum arc furnace. Preparation for titanium melting [15]

Melting in electron beam furnaces creates favorable opportunities for refining and forming a dense ingot. One of the main factors contributing to the removal of impurity elements and non-metallic inclusions from the metal is the ability to regulate the duration of the metal's stay in a liquid superheated state due to an independent heat source during EBR. This allows for almost complete removal of high and low density inclusions from the metal [20].

Another advantage of the electron beam remelting technology is that titanium sponge of various fractions and lump waste from titanium production can be used as the starting charge for EBR. In this case, the proportion of waste in the charge can reach 100% [20].

Currently, the technological scheme of EBR with an intermediate capacity developed at the E.O. Paton Institute of Electric Welding has become widespread. It allows you to separate the processes of melting and refining from impurities in the intermediate capacity, as well as the solidification of the metal in the crystallizer [20]. The metal obtained using EBR technology meets the standards set for US aerospace materials [4, 22] and for medical products [23]. EBR technology with an intermediate capacity allows you to obtain Ti ingots

transformation of the ingot into the final product are smaller, and the melting time, including furnace reloading, is shorter. Both of these factors, plus the minimization of the number of VDP furnaces required for production, lead to a decrease in cost. VDP is able to process up to 25-30% of waste from the total mass of the charge [1].

Electron beam remelting (EBR) (Fig. 6) is a promising and widely used process for producing titanium ingots [20]. The physical basis of the EBR process is the conversion of the kinetic energy of electrons accelerated in an electric field to high speeds into thermal energy when they are slowed down in the surface layer of the metal. A special device, an electron gun, forms a flow of accelerated free electrons (electron beam). The process of melting titanium is carried out in a vacuum, which prevents contamination of the metal with nitrogen and oxygen impurities from furnace atmosphere, and also improves the conditions for degassing metal [20, 21].

Fig. 6 – Electron beam furnace
Zaporizhzhia Titanium-Magnesium Plant

weighing up to 12 tons and with better metal purity than with vacuum arc remelting [1, 21]. The production of titanium castings in EB furnaces is more economical than vacuum arc and plasma arc remelting [24].

Plasma arc remelting (PAR) is a material processing technology in which the heat of thermal plasma is used to melt the starting material (Fig. 7) [24]. PAR is a promising technology for removing nitrogen-containing inclusions from titanium, since it allows the surface of the melt to be overheated to 200 °C above the melting point and makes it possible to maintain the metal in a liquid state for any required time [21]. A characteristic feature and advantage of plasma heating is the ability to treat the metal melt with various gas mixtures of the appropriate composition at a given pressure [25]. The presence of a flowing inert gas atmosphere above the surface of the liquid metal in a plasma arc furnace makes it possible to create good kinetic conditions for bath degassing [26].

Using plasma heat sources, it is possible to melt primary titanium ingots directly from the sponge, excluding the pressed electrode [26]. In this case, a lump charge is fed to the bath of liquid metal, including the return of titanium production, and its maximum content

can reach 100% under appropriate conditions [26]. In the process of remelting titanium scrap by the PAR method, dense ingots are obtained with a significantly lower content of gas impurities (oxygen, nitrogen and hydrogen) compared to the original charge [21, 27]. The macrostructure of the ingots is characterized by directional crystallization, and the surface is of excellent quality [26]. The biggest disadvantages of PAR are the high cost and complexity of equipment maintenance (plasma torch) and high electricity consumption [25, 26], although modern authors claim that the operating costs of PAR are lower than those of EBR, and the effect of metal purification is higher than that of VAR [27].

One of the advantages of cold hearth melting methods (CHMM), in addition to the control of structure and chemistry, is the possibility of manufacturing shaped ingots with a cross-section other than cylindrical [5].

Vacuum induction remelting (VIR) is a process of remelting and purifying metals under vacuum or in an

Fig. 7 – Operation of plasma torches of a plasma arc furnace [25]

Electroslag remelting (ESR) (Fig. 8) was developed in 1953 at the Paton Institute of Electric Welding [29]. Currently, variations of electroslag remelting: inert gas ESR and pressure ESR are common remelting processes. In ESR, the electrode is melted by heating synthetic slag. Due to the superheated slag, which is constantly in contact with the tip of the electrode, a liquid film of molten metal is formed from which droplets are formed. When the droplets pass through the slag, the metal is cleaned of non-metallic inclusions, which are removed by chemical reaction with the slag or by flotation to the upper part of the melt bath. The remaining inclusions are evenly distributed in the remelted ingot. In addition to this refining function, the ESR process allows for the establishment of a specific macrostructure through controlled solidification in a water-cooled copper mold. In this way, segregation is minimized and a uniform distribution of alloying elements can be achieved [28].

Ukrainian scientists continue to develop the ESR technology, they proposed the technology of chamber electroslag remelting (ChESR) [30, 31]. ChESR is based on "classic" electroslag remelting, and the presence of a chamber allows: to use active slags that

inert atmosphere, in which the metal is melted in a crucible by induction heating [5]. VIR of titanium alloys in refractory crucibles is much less energy-intensive than other melting methods, but at the same time it allows high superheating temperatures, thus improving the purity of the metal [6]. In addition, VIR allows for rapid homogenization of the melt by electromagnetic stirring and is less expensive than alternative melting methods [6]. Despite its advantages, VIR is not often used for the industrial production of titanium alloys, mainly due to the lack of stable refractory crucibles resistant to aggressive melt at high temperature and to thermal shock [6].

A promising technology is vacuum induction melting, degassing and pouring (VIMDP). The VIMDP concept allows the crucible to be kept under vacuum at all times. During pouring, the melt is transferred through a ceramic runner into a forming chamber where it fills the mold under vacuum [28].

Fig. 8 – Laboratory chamber electroslag furnace

contribute to refining; to create a vacuum or any controlled atmosphere in the melting space; to remelt highly reactive metals and alloys [7, 30]; to alloy titanium with oxygen [32] and carbon [33].

Additive technologies (AT) are a generalized name for technologies that involve manufacturing a product according to a three-dimensional digital model using the layer-by-layer addition method. AT is based on the principle of layering liquids, powders, substrates and films to create three-dimensional structures without using a mold [34]. The most common AM methods for metals are powder bed melting processes, such as: selective laser melting (SLM), electron beam melting (EBM), and laser metal deposition (LMD) processes [35].

Selective laser melting (SLM) is a process that uses laser energy to create three-dimensional metal parts by fusing fine metal powders. A thin layer of metal powder is deposited onto a platform using a blade, and the laser beam melts the powder in a controlled inert environment. The platform is then lowered and a new layer is deposited. The process is repeated until the height of the part is reached. The layer thickness can vary from 15 to 150 μm [35].

Electron beam melting (EBM) uses electron beam energy to melt metal powder. Each layer is produced by the following steps: powder distribution, preheating and sintering using a highly defocused beam, which provides mechanical stability and electrical conductivity to the powder layer, and melting using a focused beam. The layer thickness – 50 to 200 μm . The EBM process takes place in a vacuum, so this process is suitable for materials with a high affinity for oxygen [35].

Laser metal deposition (LMD) is a process in which metal powder is introduced into a focused beam of a powerful laser under strictly controlled atmospheric conditions. The focused laser beam melts the powder and creates a layer of molten material. The workpiece is moved by a computer-controlled drive system under the beam/powder interface to form the desired cross-sectional geometry. This is a complex process that is controlled by mass, heat, and fluid flow. Typically, each layer is 0.3–1 mm thick. LMD has been used to fabricate structures with graded porosity and composition from various materials, including Ti [35].

Various industries, from automotive and aerospace to jewelry and biomedical, have adopted AM processes due to the numerous advantages they offer to manufacturers and consumers. The most important advantages include the ability to create strong porous structures, product personalization, reduced tooling costs, machining and energy consumption, and production "flexibility" [35].

Conclusions

The analysis of literature sources showed that:

1. Titanium has a number of unique properties that make it attractive for many industries. These are strength, low density, corrosion resistance, biocompatibility, heat resistance, non-magnetism.

2. At present, more than 100 titanium alloys have been invented and only 20-30 have reached commercial status. The classic Ti-6Al-4V alloy remains the key titanium alloy in the world, used in more than 50% of cases, another 20-30% are alloys of commercially pure titanium.

3. Titanium alloys are widely used for the manufacture of components used in the automotive, chemical, aerospace, and biomedical industries that are exposed to difficult operating conditions. Research is underway into the properties of armor-grade titanium alloys for military applications.

4. The basis of titanium metallurgy remains the processes of vacuum arc, electron beam and vacuum induction remelting. The triple remelting process VIP/ESP/VDP provides optimal purification of materials for aerospace parts. In recent years, AM technologies (SLM, EBM and LMD) have become more popular due to the ability to create metals with customized porous architecture, "flexibility" of production, etc. However, each AM technology has its own limitations and advantages in terms of the materials used and processing technologies, which requires an individual approach to obtain the necessary products.

References

- 1 Lütjering, G. (2007). Titanium. Berlin:Springer, Heidelberg. <https://doi.org/10.1007/978-3-540-73036-1>.
- 2 Polmear, I. J. (2005). Light Alloys. Oxford:Butterworth-Heinemann. <https://doi.org/10.1016/B978-0-7506-6371-7.X5000-2>.
- 3 Ignatiev, V. S., Holovachov, A. M., Kolbin, M. O., & Yaroshenko, Ya. O. (2025). Promising metal-thermal technologies for titanium production. Theory and practice of metallurgy, 1(146), 95-99. <https://doi.org/10.15802/tpm.1.2025.13>.
- 4 Motyka, M., Ziaja, W., Sieniawsk, J., Motyka, M., Ziaja W., & Sieniawsk J. (2019). Titanium Alloys - Novel Aspects of Their Manufacturing and Processing.
- 5 Donachie, M. J. (2000). Titanium: A Technical Guide. Materials Park, Ohio: Asm Intl. <https://doi.org/10.31399/asm.tb.ttg2.9781627082693>.
- 6 Fashu, S., Lototskyy, M., & Davids, M. W. (2020). A review on crucibles for induction melting of titanium alloys. Materials & Design, 186, 1-13.
- 7 Ryabtsev, A. D., Troyanskyi, O. A., Davydov, S. I., Pashinskyi, V. V., Snizhko, O. A., Ratiev, S. M., & Leokha, F. L. (2012). Possibilities of chamber electroslag remelting in obtaining titanium of commercial purity. Modern Electrometallurgy, (1), 7-11. <http://jnas.nbuu.gov.ua/article/UJRN-0000472332>.
- 8 Marin, E., & Lanzutt,i A. (2024). Biomedical Applications of Titanium Alloys: A Comprehensive Review. Materials, 17(1), 1-42. <https://doi.org/10.3390/ma17010114>.
- 9 Cunha, A., Renz, R. P., Blando, E. (2014). Osseointegration of atmospheric plasma-sprayed titanium implants: Influence of the native oxide layer. Journal of Biomedical Materials Research Part A, 102(1), 30-36. <https://doi.org/10.1002/jbm.a.34667>.
- 10 Bränemark, R., Bränemark, P. I., Rydevik, B., & Myers, R. R. (2001). Osseointegration in skeletal reconstruction and rehabilitation: a review. Journal of Rehabilitation Research and Development, 38(2), 175-181. <https://www.rehab.research.va.gov/jour/01/38/2/pdf/branemark.pdf>.
- 11 Martín-Cameán, A., Jos, A., Puerto, M., Calleja, A., Iglesias-Linares, A., Solano, E., & Cameán, A. M. (2015). In vivo determination of aluminum, cobalt, chromium, copper, nickel, titanium and vanadium in oral mucosa cells from orthodontic patients with mini-implants by Inductively coupled plasma-mass spectrometry (ICP-MS). Journal of Trace Elements in Medicine and Biology, 32, 13-20. <https://doi.org/10.1016/j.jtemb.2015.05.001>.
- 12 Weiss, I., & Semiatin, S. L. (1999). Thermomechanical processing of alpha titanium alloys—an overview. Materials Science and Engineering, 263(2), 243-256. [https://doi.org/10.1016/S0921-5093\(98\)01155-1](https://doi.org/10.1016/S0921-5093(98)01155-1).
- 13 Bania, P. J. (1994). Beta titanium alloys and their role in the titanium industry. JOM, 46(7), 16-19. <https://doi.org/10.1007/BF03220742>.
- 14 Martin, J. (2006). Materials for Engineering. Woodhead Publishing, 269 p.

15 Leyens, C., & Peters, M. (ed.). (2003). Titanium and Titanium Alloys: Fundamentals and Applications. Weinheim : Chichester:Wiley-VCH, 532 p. <https://www.amazon.com/Titanium-Alloys-Fundamentals-Applications/dp/3527303>.

16 Gospodinov, D., & Ferdinandov, N. (2016). Classification, properties and application of titanium and its alloys. ResearchGate, 55(2), 27-32. <http://conf.uni-ruse.bg/bg/docs/cp16/2/2-5.pdf>.

17 Banerjee, D., & Williams, J. C. (2013). Perspectives on Titanium Science and Technology. *Acta*

18 Veiga, C., Davim, J. P., & Loureiro, A. (2012). Properties and applications of titanium alloys: A brief review. *Reviews on Advanced Materials Science*, 32, 133-148.

19 Ren, Y., Wang, F., Tan, C., Wang, S., Yu, X., Jiang, J., Ma, H., & Cai, H. (2013). Shock-induced mechanical response and spall fracture behavior of an extra-low interstitial grade Ti-6Al-4V alloy. *Materials Science and Engineering*, 578, 247-255. <https://doi.org/10.1016/j.msea.2013.04.080>.

20 Paton, B. E., Trygub, M. P., Akhonin, S. V., & Zhuk, G. V. (2006). Electron beam melting of titanium. *Naukova dumka*, 248.

21 Kolobov, G. O., Karpenko, A. V., & Bubynets, O. V. (2016). Refining remelts and other methods for obtaining high-purity titanium. *New materials and technologies in metallurgy and mechanical engineering*, 2, 9-17.

22 Akhonin, S. V., Berezos, V. A., Pikulin, A. N., Severin, A. Yu., Shvab, S. L., & Erokhin A. G. (2018). Producing of high-strength titanium alloy VT22 by method of electron beam melting. *Electrometallurgy Today*, 3, 6-15. <http://dx.doi.org/10.15407/sem2018.03.01>.

23 Berezos, V. O., & Akhonin, D. S. (2023). Electron beam melting of titanium alloys for medical purposes. *Electrometallurgy Today*, 5-13. <https://doi.org/10.37434/sem2023.02.01>.

24 Sung, S. Y., & Kim, Y. J. (2007). Melting and Casting of Titanium Alloys. *Materials Science Forum*, 539-543, 3601-3606. <https://doi.org/10.4028/www.scientific.net/MSF.539-543.3601>.

25 Shapovalov, V. A., Tsykulenko, K. A., Sheiko, I. V., & Kolesnichenko, V. I. (2010). Plasma metallurgy and the service life of plasma torches. *Modern electrometallurgy*, (4), 20-26.

26 Lakomsky, V. I. (1974). Plasma-arc melting. *Tekhnika*.

27 Oh, J.-M., Roh, K.-M., & Lim, J.-W. (2016). Brief review of removal effect of hydrogen-plasma arc melting on refining of pure titanium and titanium alloys. *International Journal of Hydrogen Energy*, 41(48), 23033-23041. <https://doi.org/10.1016/j.ijhydene.2016.09.082>.

28 Jarczyk, G., & Franz, K. (2012). Vacuum melting equipment and technologies for advanced materials. *Archives of materials science and engineering*, 56, 82-88.

29 Paton, B. E., & Medovar, B. I. (1958). Electroslag remelting of steels and alloys in a copper water-cooled crystallizer. *Automatic welding*, 11, 5-15.

30 Ryabtsev, A. D., Leokha, F. L., & Ratiev, S. M. (2013). Chamber electroslag remelting is an effective method for refining and alloying titanium. *Metallurgical processes and equipment*, 3, 26-32. <http://www.ribis-nbuv.gov.ua/publ/REF-0000439584>

31 Ryabtsev, A. D., Troyansky, O. A., Ratiev, S. M., Snizhko, O. A., & Leokha, F. L. (2011). Refining and alloying of titanium in the process of chamber electroslag remelting. *Sciences of DonNTU. Metallurgy*, 13(194), 148-156.

32 Ratiev, S. M., Ryabtseva, O. A., Troyansky, O. A., Ryabtsev, A. D., Davidov, S. I., & Shvartsman, L. Ya. (2010). Curing of titanium with acid in the gas phase during chamber electroslag remelting of titanium sponge. *Current electrometallurgy*, 2, 8-12. <http://jnas.nbuv.gov.ua/article/UJRN-0000471062>.

33 Ryabtsev, A. D., Troyansky, O. A., Friedrich, B., Pashinsky, V. V., Leokha, F. L., & Ratiev, S. M. (2014). Refining titanium with carbon in the process of chamber electroslag remelting. *Current electrometallurgy*, 2(115), 3-9.

34 Pavligo, T. M. (2023). Standards for additive virobnistva (look back). *Interuniversity collection "Scientific additions"*. 76, 16-28. <https://doi.org/10.36910/775.24153966.2023.76.3>.

25 Trevisan, F., Calignano, F., Aversa, A., Marchese, G., Lombardi, M., Biamino, S., Ugues, D., & Manfredi, D. (2018). Additive manufacturing of titanium alloys in the biomedical field: processes, properties and applications. *Journal of Applied Biomaterials & Functional Materials*, 16(2), 57-67. <http://dx.doi.org/10.5301/jabfm.5000371>.

Надіслано до редакції / Received: 11.08.2025

Прийнято до друку / Accepted: 08.12.2025

Grishin O.M., Velychko O.G., Grek O.S., Nadtochiy A.A.
Electromagnetic field effects on the kinetics of solid-state reduction of iron oxides with gases

Ukrainian State University of Science and Technologies, Dnipro, Ukraine

Гришин О.М., Величко О.Г., Грек О.С., Надточій А.А.

Влияние электромагнитного поля на кинетику твердофазного восстановления оксидов железа газами

Український державний університет науки і технологій, м. Дніпро, Україна

Анотація. Мета. Метою роботи є дослідження фізико-хімічних закономірностей інтенсифікуючого впливу електромагнітного поля на процес твердофазного відновлення оксидів газами. **Методика.** Експерименти проводили у змінному магнітному полі з частотою змінного току в індукторі до 40 кГц. з використанням термогравіметричної методики. Процес непрямого відновлення досліджували із визначенням ступеню та швидкості відновлення оксиду у діапазоні температур 973-1373 К з використанням різних залізо-рудних матеріалів. **Результати.** Результатами лабораторних експериментів свідчать про вплив високочастотного електромагнітного поля, що інтенсифікує, на процес твердофазного відновлення залізорудних матеріалів. Подано фізико-хімічну модель механізму інтенсифікуючого впливу ЕМП на процес відновлення. Високочастотне поле сумісно прискорює процеси дифузії, а також підвищує електронну та структурну дефектність кристалічних ґрат, що позитивно впливало на розвиток адсорбційно-хімічної ланки. **Наукова новизна.** Експериментально підтверджено вплив ЕМП на кінетику газового відновлення залізорудних матеріалів. **Практична значущість.** Інтенсифікація процесів твердофазного відновлення залізорудної сировини забезпечує інтенсифікацію процесу та підвищення продуктивності процесу.

Ключові слова: твердофазне відновлення, інтенсифікація, оксиди заліза, змінне електромагнітне поле.

Abstract. Objective. The aim of the work is to study the physicochemical correlations of the intensifying effect of an electromagnetic field on the process of solid-phase reduction of oxides by gases. **Methods.** The experiments were carried out in an alternating magnetic field with an alternating current frequency in the inductor up to 40 kHz using the thermogravimetric technique. The process of indirect reduction was studied to determine the degree and rate of oxide reduction in the temperature range of 973-1373 K using various iron ore materials. **Results.** The results of laboratory experiments indicate the influence of a high-frequency intensifying electromagnetic field on the process of solid-phase reduction of iron ore materials. A physicochemical model of the mechanism of the intensifying effect of EMF on the reduction process is presented. The high-frequency field significantly accelerates the diffusion processes and increases the electronic and structural defectiveness of the crystal lattice, which positively influenced the development of the adsorption-chemical link. **Scientific novelty.** The effect of EMF on the kinetics of gas reduction of iron ore materials has been experimentally confirmed. **Practical significance.** The intensification of solid-phase reduction of iron ore raw materials leads to the intensification of the process and increase of the process productivity.

Keywords: solid-phase reduction, intensification, iron oxides, alternating electromagnetic field.

Introduction

One of the most important challenges facing the steel industry today is to reduce mineral and energy consumption, as well as to incorporate various man-made materials into the technological process. The most effective way to solve this problem is to further develop the physicochemical basis and technological aspects of solid-phase reduction of ore materials. The share of metals produced by this technology in the world is constantly increasing [1]. However, despite its significant advantages, the existing technological schemes of solid-phase reduction have a significant drawback - low productivity. Currently, various methods of intensification of reduction processes have been developed and successfully applied: physical, chemical-catalytic and energy impact on the reacting system.

Common to these intensification methods is the impact on the diffusion and crystal-chemical links of the reduction process. However, the intensification of metal oxide reduction processes involving different types of energy impact remains insufficiently studied.

Various external energy (physical) influences as possible regulators of physical and chemical processes have long attracted the attention of researchers. Thanks to numerous studies, the most significant successes in this area have been achieved using electromagnetic and corpuscular radiation [2-6]. For example, under the influence of α -particles, the decomposition reactions of carbon monoxide, its oxidation, and many others are accelerated [6]. The observed effects are due to the excitation of gas molecules, their ionization, and the formation of atoms and radicals.

Radiation has a great impact on solids, including oxide semiconductors. High-frequency electromagnetic effects (visible light, γ -rays, etc.) cause the appearance of super-equilibrium free electrons and electron holes in crystals (possibly through an intermediate exciton state) [6,7]. Some of the free charge carriers can be localized on structural defects in the crystal lattice. All this leads to changes in the chemisorption and catalytic properties of the semiconductor surface. [2,6,7].

High-energy corpuscular radiation (fluxes of α and β particles, protons, neutrons, etc.) causes the appearance of additional vacancies and inter-node ions in the lattice of crystals [2,5,6,8]. The generated structural defects, in turn, affect the concentration of electronic defects in the semiconductor, its chemisorption and catalytic activity. Similar shifts occur during the development of nuclear reactions that lead to the appearance of foreign atoms in the lattice.

Radiation not only affects the reaction of gases with each other on the surface of solids (heterogeneous catalysis) but also changes the rate of interaction of the latter with gases. It has been established that irradiation can accelerate the oxidation of metals and their reduction from oxides [9]. Author in study [10] has shown a significant intensification of the reduction of iron oxides by H_2 and CO under the influence of ionizing and gamma irradiation (during the reaction or preliminary); at the same time, the temperature of the beginning of the process decreased at a noticeable rate. It should be noted that the positive effect of γ -rays was also observed when they were used simultaneously with catalysts. The observed kinetic shifts are usually associated with favorable changes in the conditions of gas chemisorption, weakening of metal-oxygen bonds, acceleration of ion diffusion through crystal lattices, and facilitation of the formation of new phases.

Acoustic effects of ultrasonic frequencies have a wide range of effects on the course of physical and chemical processes. They accelerate the processes of dissolution and diffusion in solid phases, and some chemical reactions [11]. It is shown in study [11] a significant increase in the rate of iron oxidation by air, its reduction by hydrogen and CO from oxides. These effects are associated with the intensification of external diffusion mass transfer due to mechanical perturbations of the gas medium; with the acceleration of solid-phase diffusion and the facilitation of crystal lattice rearrangement due to their loosening by ultrasonic vibrations, dissipation of wave energy at the gas/solid interface.

There is information on the effect of external electric fields on a wide range of processes [3,12]. Their imposition on semiconductor materials, changing the surface concentration of free charges, causes an electroadsorption effect that allows regulating the donor-acceptor chemisorption of gases. By influencing the position of the Fermi level, external electric fields create an electrocatalytic effect and affect the rate of chemical reactions. In strong fields, semiconductors are enriched with additional charge carriers (mainly due to

thermoelectric and impact ionization), which also affects the surface properties and reactivity of the solid. It is worth noting the possibility of superimposing electron transfer on the diffusion flow in ionic crystals and metals [4,12].

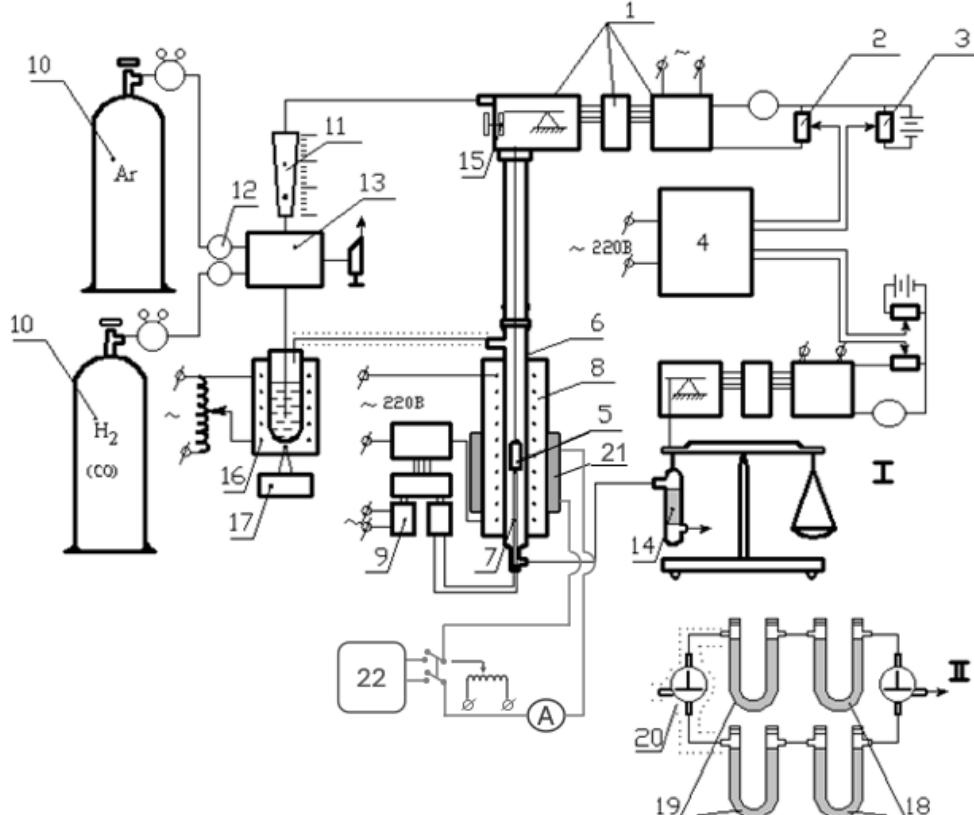
There is connection between the magnetic properties of solids and their catalytic and adsorption properties, and reactivity with gases and also influence of magnetic fields on the development of some physico-chemical processes. In recent years, a limited number of works have been published on the kinetics of the reduction of iron oxides by gases under magnetic effects (see [13-15]). The authors noted an increase in the rate of reduction of iron oxides by hydrogen under the application of a magnetic field and a decrease in the temperature of the beginning of the process; in the flow of CO and CH_4 , there was no positive effect (in a constant and alternating field). The established regularities were unambiguously explained. For example, in [13], the acceleration of the process was associated with the attraction of hydrogen orthohydrogen molecules by ferromagnetic solid phases and the resulting increase in the pressure of the reducing agent near the reaction surface. In work [14], the intensification effect was interpreted in thermodynamic terms as the introduction of an additional amount of energy due to the magnetic field.

The kinetic regularities and the mechanism of reduction of iron oxides by gases under the conditions of application of electromagnetic fields of different reacting frequencies (up to $5 \cdot 10^4$ Hz) to the system were studied.

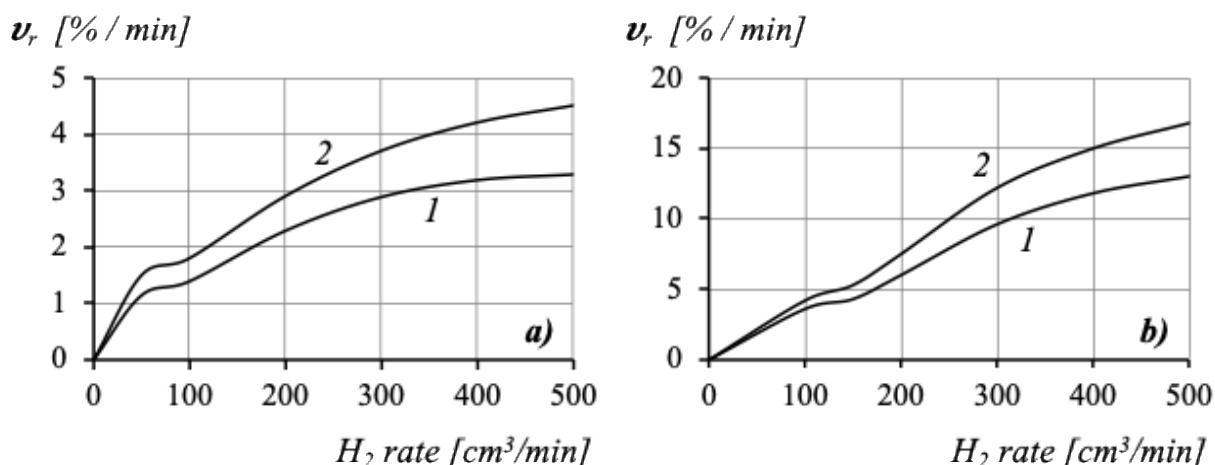
Experimental procedure

The reduction of iron ore samples streamlined by gases was carried out at the installation, the scheme of which is shown in Fig. 1. To generate electromagnetic effects, it was additionally equipped with a water-cooled inductor located coaxially with the reactor and heating element.

In the case of generating low-frequency magnetic fields, the inductor was a multi-turn copper wire solenoid. It was powered from the power grid through an autotransformer, which allowed changing the field strength H . A multivibrator was used to adjust the frequency of the latter ($f < 50$ Hz). In experiments with a constant magnetic field, the solenoid was powered through a rectifier.


To create electromagnetic effects of high frequencies ($f = 50$ kHz), an inductor made of a copper water-cooling tube was used. It was powered and the field parameters were controlled using a power generator UZG 5-1.6 and a master generator GZ-33. The power supplied to the inductor was set and maintained by an indicator with a scale range from 0 to 100 relative units (W). The voltage (U) was measured with a tube voltmeter.

Various iron ore materials were used in the research: chemically pure iron oxides and industrial concentrates. The following were subjected to reduction: Fe_2O_3 of AG qualification, crystalline (particle size 0.5-2 mm); iron ores in pieces and grains of various sizes -

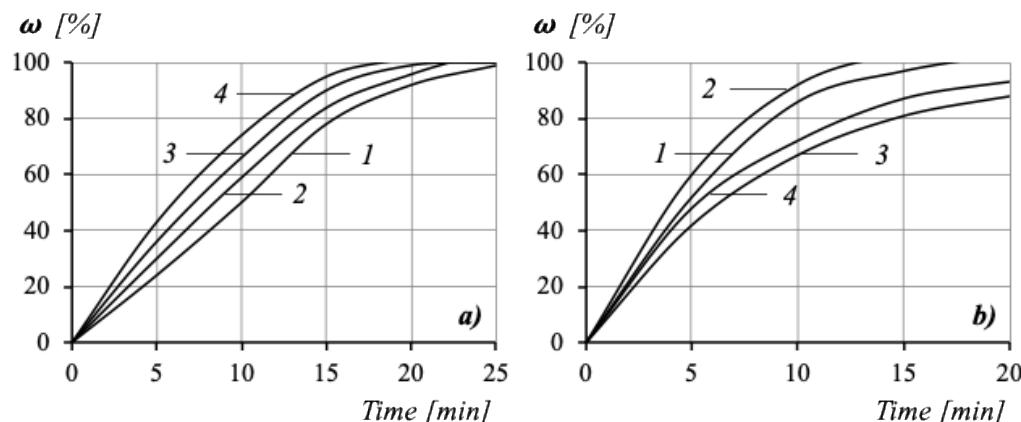

Lysakovskaya ($Fe_{total} = 41.6\text{-}43.7\%$), Kryvyi Rih hematite ($Fe_{total} = 54.7\%$), magnetite ($Fe_{total} = 56.7\%$), rich martite ore; raw and subjected to oxidative firing at 1523 K; fluxed agglomerate with basicity of 1.1 and 1.33 with oxygen content of 22.5 and 22.2%, respectively.

Results and discussion

At the first stage of the work, the effect of alternating magnetic fields of industrial frequency ($f = 50$ Hz) on the rate of reduction (v_r) of crystalline iron oxide (Fe) by hydrogen was studied. The study revealed an intensifying effect of external influences, which increases with increasing W_{H_2} (Fig. 2).

Fig. 1. The scheme of the experimental thermogravimetric setup 1-mechanoelectrical transducer; 2-scale divider; 3-counter-EMF; 4-automatic potentiometer KSP-4; 5-basket with a sample of the material under study; 6-reactor; 7-thermocouple PR 30/6; 8-resistance furnace; 9-temperature regulator VRT-3; 10-gas cylinders; 11-rotameter; 12-flow regulator; 13-valve box; 14-CO₂ absorber; 15-hoist; 16-saturator; 17-XA-thermocouple with PP-63; 18-CO₂ absorbers; 19-H₂O absorbers; 20-three-way valve, 21-water-cooled inductor, 22-frequency generator.

Fig. 2. Effect of an alternating field on the reduction of Fe_2O_3 by hydrogen at 773 K (a) and 973 K (b): 1-outside the field, 2-in the field $H = 24$ kA/m


Temperature variations in the range of 773-1073 K showed that the application of a magnetic field accelerates the process most at 873-973 K. The character of the kinetic curves remains the same (Fig. 3a). Up to 973 K, the reduction (ω) developed stepwise; exceeding this temperature led to a zonal flow of the process. In the experiments at 773 K, the appearance of metastable wustite was observed.

The effect of an alternating magnetic field on the duration of the complete recovery of hematite $\tau_{\omega=100}$ in the temperature range 773-1073 K is illustrated in Table 1.

Similar patterns were observed in experiments with powdered materials - chemically pure Fe_2O_3 and Fe_3O_4 . The magnetic field of industrial frequency significantly accelerated the oxygen removal almost throughout the entire process (Fig. 3b).

Table 1.
Time of complete reduction of crystalline Fe_2O_3 by hydrogen under normal conditions and under the application of an alternating magnetic field ($H = 24 \text{ kA/m}$)

T, K		773	873	973	1073
$T_{\omega=100}$	Outside the field	34.5	26	21.7	17.2
	In the field	32	22.5	17.7	16

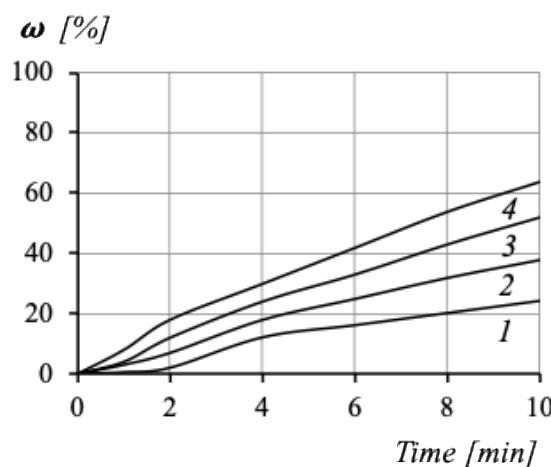


Fig. 3. Kinetics of reduction of iron oxides by hydrogen under industrial frequency EMF: a) - Fe_2O_3 ; 1,2-873 K, 3,4-973 K, 1,3-outside the field, 2,4-in the field; b) - 973 K, powder; 1,2- Fe_2O_3 , 3,4- Fe_3O_4 ; 1,3-outside the field, 2,4-in the field

The next stage of the work was to study the effect of a high-frequency electromagnetic field on the kinetics of gas reduction of iron ore materials. The studies revealed significant opportunities to intensify the process using this method.

The reduction of chemically pure Fe_2O_3 with hydrogen ($300 \text{ cm}^3/\text{min}$) showed that the application of an EMF ($f = 25 \text{ kHz}$; $W = 30$, which corresponds to

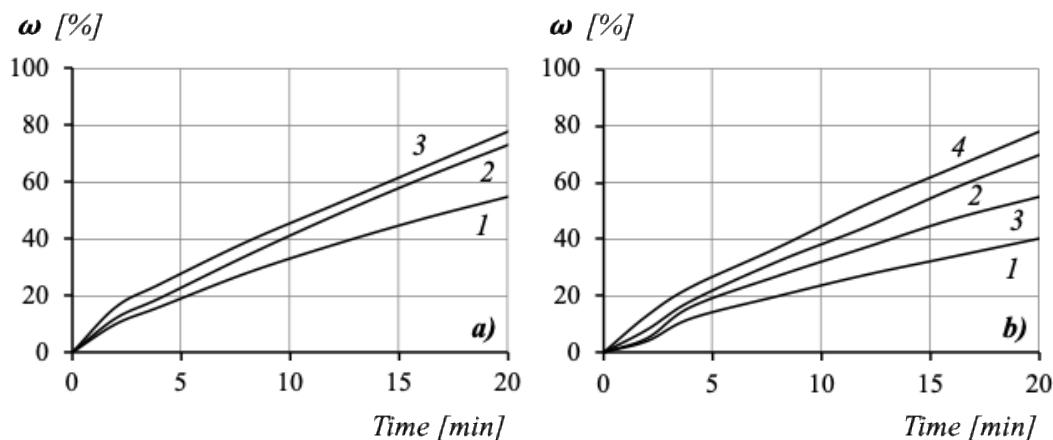

$U = 80 \text{ V}$, $H \sim 5 \text{ kA/m}$) strongly accelerates the removal of oxygen from the charge in the low temperature region: 573-673 K. Thus, ω , which was achieved in 20 min at 673 K, increased from ~ 40 to 70%, i.e., more than 1.7 times, and in the first 10 min of the experiment - 1.6 times. Increasing the temperature reduced the intensifying effect: at 873 K, it increased from 52 to $\sim 65\%$ or 1.25 times (Fig. 4).

Fig. 4. Effect of a high-frequency electromagnetic field ($f = 25 \text{ kHz}$, $W = 30$, $H \sim 5 \text{ kA/m}$) on the kinetics of Fe_2O_3 reduction by hydrogen ($W_{\text{H}_2} = 300 \text{ cm}^3/\text{min}$): 1,2-673 K; 3,4-873 K; 1,3-outside the field; 2,4-under the influence of the field, mode II

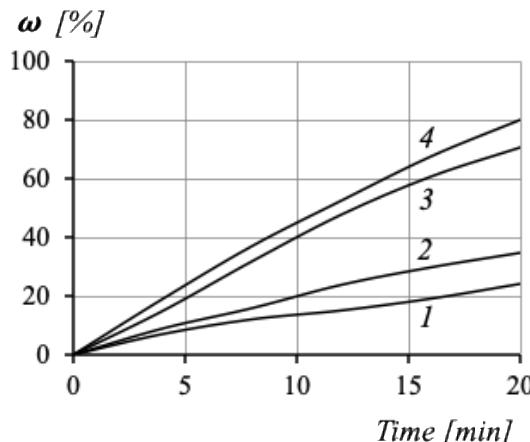
The application of low-frequency magnetic fields ($f \leq 50$ Hz) did not cause the charge to heat up. A thermocouple inserted inside the powdered Fe_2O_3 , Fe_3O_4 and Fe charges did not record any temperature changes. Measurements during the reduction of granular Lysakivska ore with H_2 at 873 K led to similar results.

A different picture was observed under conditions of electromagnetic influences of high frequencies. A thermocouple located under the sample showed an increase in its temperature with a constant power consumption by the heating element. This additional heating of the charge decreased as the reduction temperature increased. The test showed, however, that the observed intensification of the process could not be reduced to a single heating (quantitative relationships are discussed below).

Fig. 5. Kinetics of Fe_2O_3 reduction by hydrogen under high-frequency electromagnetic action ($f = 25$ kHz, $W = 30$) at 673 K: a) - $W_{\text{H}_2} = 600$ cm^3/min , 1-out of the field; 2,3-under the influence of the field (2-mode I, 3-mode II); b) - mode II, 1,3-out of the field; 2,4-in the field; 1,2- $W_{\text{H}_2} = 300$ cm^3/min ; 3,4- $W_{\text{H}_2} = 600$ cm^3/min .

During the reduction of Fe_2O_3 , a short incubation period was observed, followed by a self-acceleration of the process (Figs. 4 and 5). This may be due not only to the peculiarities of the development of the crystal-chemical link, but also to the heating of the sample after its transfer from the upper cold zone of the reactor to the working zone. Under normal conditions, the kinetic reduction curves were characterized by kinks,

Given the above, experiments with the application of electromagnetic fields were carried out in two modes:


I - to fix the temperature rise caused by external energy effects without changing the power supply to the heater;

II - to stabilize the temperature in the reactor core by reducing the voltage supplied to the heating element.

The transition from the first mode to the second naturally reduced the accelerating effect of the field, but it remained very significant (Fig. 5a). Increasing the flow rate of H_2 contributed to the development of the process (Fig. 5b); however, the acceleration effect did not increase, as was the case with low-frequency magnetic effects.

indicating a predominantly stepwise process. The application of high-frequency fields shortened the incubation period and smoothed out the kinks; a shift towards a zonal mode of process development occurred.

In general, similar patterns of the process and the same nature of the electromagnetic field effect were observed during the reduction of chemically pure Fe_3O_4 (Fig. 6).

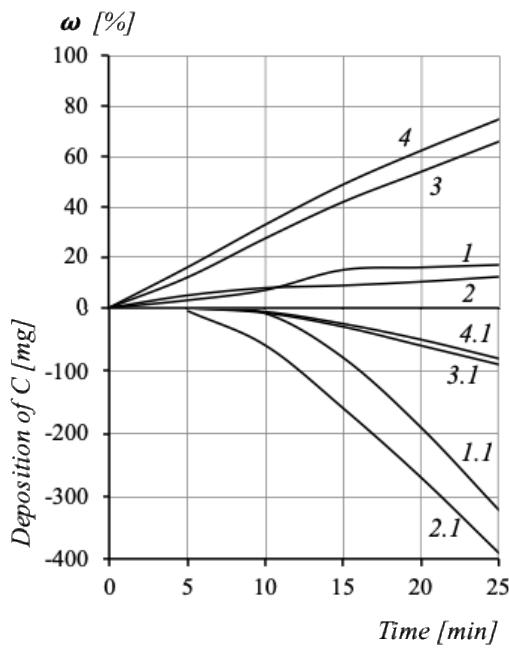


Fig. 6. The effect of high-frequency EMF ($f = 40$ kHz, $W = 30$) on the kinetics of Fe_3O_4 reduction by hydrogen with $W_{\text{H}_2} = 600$ cm^3/min : 1,2-673 K; 3,4-973 K; 1,3-outside the field; 2,4-in the field; mode I

Calculations show that at $W_{H_2} = 300 \text{ cm}^3/\text{min}$, the composition of the off gases at the first stage of Fe_2O_3 reduction is far from equilibrium. External energy influences do not significantly change this picture. At the subsequent stages of the process, under normal conditions, the H_2O concentration approaches equilibrium. In the case of superposition of fields, the water vapor content reaches equilibrium and even exceeds it. This should be attributed to some overlap of different

degrees of recovery and inaccuracy of thermodynamic data, especially at low temperatures. At an increased H_2 flow rate of $600 \text{ cm}^3/\text{min}$, the exhaust gases contained a significant excess of reducing agent and gaseous products, apparently, did not significantly inhibit the accelerating effect of electromagnetic fields.

The intensification of the process also occurred in the case of reduction of chemically pure iron oxides with carbon monoxide (Fig. 7).

Fig. 7. Effect of a high-frequency electromagnetic field ($f = 40 \text{ kHz}$, $W = 30$) on the kinetics of reduction of magnetite concentrate by carbon monoxide at ($W_{\text{CO}} = 600 \text{ cm}^3/\text{min}$): 1,2-673 K; 3,4-973 K; 1,3 -outside the field; 2,4-under the influence of the field; mode I.

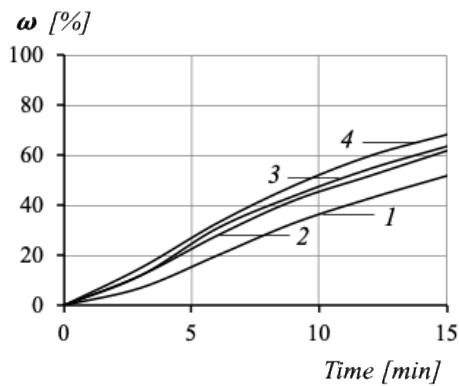
At elevated temperatures, an increase in u_r was observed throughout the experiment; the rate of the carbon gasification reaction, which proceeded slowly, was weakly dependent on the application of external effects. In the low-temperature region, electromagnetic fields accelerated the initial stage of oxygen removal and simultaneously promoted earlier decomposition. As a result, u_r decreased, but, unlike the reduction under normal conditions, it remained significant despite the intensive course of the gasification reaction.

The analysis of experimental data showed that at

$W = 600 \text{ cm}^3/\text{min}$, the CO_2 concentration in the off gas at all stages of the recovery does not reach equilibrium values.

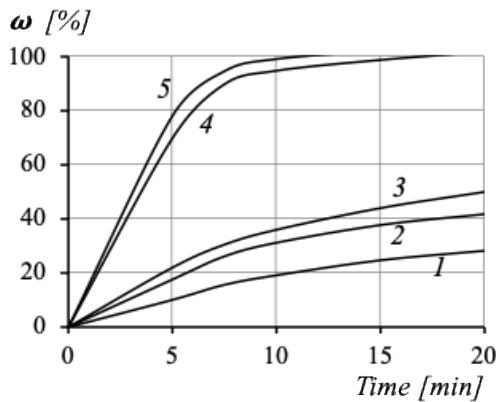
The degree of acceleration of the process by electromagnetic effects significantly depended on their parameters: frequency and power supplied to the inductor. In the tested frequency range, an increase in f to $\sim 35 \text{ kHz}$ generally accelerated the removal of oxygen (some deviations were observed around 15 kHz; later, the intensifying effect stabilized (Table 2).

Table 2.


Effect of the electromagnetic field frequency and power supplied to the inductor on the degree of reduction of Fe_2O_3 by hydrogen during 20 min at 673 K ($W_{H_2} = 600 \text{ cm}^3/\text{min}$; temperature regime II)

f , kHz with $W = 30$	Outside the field	2	10	20	30	40	50
$\omega_{T=20}$, %	54.5	64.5	68	66.5	74.5	78	78
W with $f = 42 \text{ kHz}$	Outside the field	10	20	30	40		
$\omega_{T=20}$, %	54.5	58.5	67	78.5	92.5		

An increase in the power of external influences at different values of (f) proved to be very effective in terms of process acceleration. As for the reduction of Fe_2O_3 with hydrogen at 673 K, this is illustrated in Table 2. Similar results were obtained in the region of higher temperatures, as well as in the CO flow. For example, in the experiments on the reduction of Fe_3O_4 by carbon monoxide at 973 K, $\omega_{T=25}$ in the field with $W = 30$ and 50, the reduction rate increased from


67.5% to 76 and 82.5%, respectively.

Studies of the gas reduction of industrial iron ore materials have confirmed the significant potential of intensifying electromagnetic fields of high frequencies. The degree of acceleration of the process in experiments with magnetite concentrate (Fig. 8) was close to that of chemically pure iron oxides observed during the reduction.

Fig. 8. Kinetics of reduction of magnetite concentrate by hydrogen ($W_{H_2} = 600 \text{ cm}^3/\text{min}$) under high-frequency EMF ($f = 25 \text{ kHz}$, $W = 30$): 1,2-773 K; 3,4-973 K; 1,3-outside the field; 2,4-under the influence of the field; mode I

The general patterns of the field effect were preserved during the transition from powder to granular charge. Thus, in the experiments with Lysakivska ore, the application of the field ($f = 40 \text{ kHz}$, $W = 50$, which corresponds to $U = 120 \text{ V}$, $H \sim 3.5 \text{ kA/m}$) increased the u_r at 773 K by 1.5 times. This result was obtained under conditions of stabilized temperature; in mode I,

the average value of u_r almost doubled. In the region of elevated temperatures, the effectiveness of external influences decreased, but even at 1173 K, there was a significant reduction in the time of complete recovery (Fig. 9). No noticeable heating of the charge was observed.

Figure 9. Kinetics of reduction of iron ore materials by hydrogen ($W_{H_2} = 600 \text{ cm}^3/\text{min}$) under conditions of high-frequency EMF ($f = 40 \text{ kHz}$, $W = 50$): iron ore in grains 0.5-1.0 mm; 1,2,3-773 K; 4,5-1173 K; 1,4-out-of-field; 2,3,5-under EMF conditions; 2,5-mode II; 3-mode I;

The studies showed that the nature of the field frequency effect coincides with that discussed earlier. As before, the power of external influences was strongly felt. This can be illustrated by the results of the reduction of magnetite concentrate with hydrogen at 973 K: an electromagnetic field with a frequency of 25 kHz and $W = 30$ increased the reduction from 63 to $\sim 69\%$, and in the case of $W = 50$, this value increased to 77%.

External influences significantly accelerated the removal of oxygen from pelleted ore materials. The positive effect of high-frequency fields ($f = 40 \text{ kHz}$, $W = 50$) was established in experiments with oxidized magnetite pellets. Even at an elevated temperature of 1173 K, the oxygen recovery in the H_2 stream increased from 58.5 to 68%, and in the CO stream from 24 to $\sim 30\%$.

Conclusions

1. The intensifying effect of weak electromagnetic fields with a frequency of $0.5-5 \cdot 10^4 \text{ Hz}$ during the reduction of iron by gases - H_2 , CO and their mixtures - has been established.

2. High-frequency electromagnetic fields most strongly accelerated the reduction of iron in the temperature range of 573-773 K. With an increase in frequency (up to 35-40 kHz) and intensity, the effectiveness of their superposition increased.

3. In this temperature range, electromagnetic effects ($f = 25-40 \text{ kHz}$; $H = 3.5-5 \text{ kA/m}$) increased the rate of reduction of chemically pure iron oxides and Lysakivskiy ore by 1.5-2 times.

4. Studies have shown that the application of low-frequency magnetic fields passivates the product of metallization of iron ore raw materials. High-frequency effects have different effects on the oxidisability of the reduction product, but they do not lead to its pyrophoricity. Only the iron obtained by reduction in a variable cross-section reactor under pulsed effects on the reacting system had high oxidisability. However, it was eliminated by a ten-minute exposure of the metallized concentrate at 973 K in an inert atmosphere.

References

1. World Steel Association (2024). *World Steel in Figures*. <https://worldsteel.org/wp-content/uploads/World-Steel-in-Figures-2024.pdf>.
2. John, M., Thomas, W., & John, T. (2015). *Principles and Practice of Heterogeneous Catalysis*. Wiley-VCH.

3. Lannoo, M., & Bourgoin, J. (2012). *Point Defects in Semiconductors*. I Springer Berlin. <https://doi.org/10.1007/978-3-642-81574-4>.
4. Rick, U. (2024). *Crystallography and Crystal Chemistry*. Springer Cham. <https://doi.org/10.1007/978-3-031-49752-0>.
5. Stiegler, J. O., & Mansur, L. K. (2003). Radiation Effects in Structural Materials. *Annual Review of Materials Science*, 9(1), 405-454. <https://doi.org/10.1146/annurev.ms.09.080179.002201>.
6. Zhao, C., Hirota, K., Taguchi, M., Takigami, M., & Kojima, T. (2007). Radiolytic degradation of octachlorodibenzo-p-dioxin and octachlorodibenzofuran in organic solvents and treatment of dioxin-containing liquid wastes. *Radiation Physics and Chemistry*, 76(1), 37-45. <https://doi.org/10.1016/j.radphyschem.2006.01.014>
7. Zhiwei, C., Cheng, H., Tengfei Z., & Juncheng H. (2019). Strike a balance between Adsorption and Catalysis Capabilities in Bi_2Se_3 -xOx Composites for high-efficiency antibiotics remediation. *Chemical Engineering Journal* 382, 122877. <https://doi.org/10.1016/j.cej.2019.122877>.
8. Saravanan, A., Kumar, P. S., Jeevanantham, S., Anubha., M., & Jayashree, S. (2022). Degradation of toxic agrochemicals and pharmaceutical pollutants: Effective and alternative approaches toward photocatalysis. *Environ Pollut*. <https://doi.org/10.1016/j.envpol.2022.118844>.
9. Syed, K., Krstulović, N., Casanova-Cháfer, J., Llobet, E., Güell, F. (2023). The role of the pulsed laser deposition in different growth atmospheres on the gas-sensing properties of ZnO films, *Sensors and Actuators B: Chemical*, 382, 133454. <https://doi.org/10.1016/j.snb.2023.133454>.
10. Holmboe, M. (2023). Umeå University, Sweden Date: Effect of gamma irradiation on the redox states of the structural iron in bentonite clay November 2023 Report number: 14 <https://www.stralsakerhetsmyndigheten.se/contentassets/8402983b097a46bb9723c985dc985a97/202314-effect-of-gamma-irradiation-on-the-redox-states-of-the-structural-iron-in-bentonite-clay.pdf>
11. Panjak, M. (2004). Effect of ultrasound on the redox reactions of iron (II) and (III). *Indian journal of chemistry- section. A*, 43(10), 2098-2101.
12. Ertl, G. (2009). *Reactions at Solid Surfaces*. Wiley. <https://scispace.com/pdf/reactions-at-solid-surfaces-5dgbtjzclw.pdf>
13. Svare, I. (1973). Effect of Magnetic Field on Reduction of Haematite. *Nature. Physical science*, 244(135), 78-79. <https://doi.org/10.1038/physci244078a0>
14. Peters, C. (1973). Accelerated Reaction Rates in a Magnetic Field. *Nature Physical Science*, 244, 79. <https://www.nature.com/articles/physci244079a0>
15. Yongli, J., Hai, Y., Jieyu Z., & Zengwu Z. (2019). Effect of Magnetic Field on Reduction of Iron Oxides Containing CaO. *Acta Metall Sin*, 55(3), 410-416. <https://doi.org/10.11900/0412.1961.2018.00492>.

Надіслано до редакції / Received: 13.08.2025

Прийнято до друку / Accepted: 08.12.2025

Соболенко М.О., Романова Н.С.

Структуроутворення за безперервного охолодження деформованого аустеніту борвмісної сталі

Український державний університет науки і технологій, м. Дніпро, Україна

*Sobolenko M.A., Romanova N.S.***Structure formation during continuous cooling of deformed austenite of boron-containing steel**

Ukrainian State University of Science and Technologies, Dnipro, Ukraine

Анотація. Мета. Встановити закономірності формування структури сталі 30Г1Р за охолодження з різними швидкостями від температури нагрівання 1030 -1040 °C. Проаналізувати кінетику розпаду деформованого аустеніту низьковуглецевої борвмісної сталі. Методика. Дослідження структурно-фазових перетворень і кінетики розпаду деформованого аустеніту проводили із застосуванням метода диференційно-термічного аналізу на зразках борвмісної сталі з дослідженнями мікроструктури та твердості. Результати. Вивчено кінетику перетворень структурних складових і побудовано термокінетичну діаграму розпаду деформованого аустеніту борвмісної сталі з урахуванням впливу гарячої пластичної деформації. Виявлено особливості впливу швидкості охолодження деформованого аустеніту на об'ємну частку структурних складових досліджуваної сталі. Наукова новизна. Показано вплив температури - деформаційних умов і режимів охолодження з підстуджуванням після деформації на особливості структуроутворення борвмісної сталі. Виявлено вплив швидкості охолодження на характер перетворень деформованого аустеніту та механічні властивості досліджуваної сталі. Практична значимість. Проведені дослідження розпаду гарячедеформованого аустеніту сталі 30Г1Р дозволяють обґрунтувати підходи до розробки режимів і технологій виробництва підкату під холодну висадку з формуванням оптимальних мікроструктур і властивостей у гарячекатаному стані. Встановлено інтервали швидкостей охолодження, які забезпечують формування необхідної структури, що складається переважно з високодисперсного квазіеутектоїду та самовідпущеного бейніту, що є основою для реалізації прогресивних видів сфероїдизуючих обробок сталі.

Ключові слова: швидкість охолодження, термокінетична діаграма (ТКД), структура, кінетика перетворень аустеніту, борвмісна сталь.

Abstract. Purpose. To establish the regularities of the formation of the structure of 30G1R steel during cooling at different rates from the heating temperature of 1030 -1040 °C. To analyze the kinetics of the decomposition of deformed austenite of low-carbon boron-containing steel. Methodology. Studies of structural-phase transformations and the kinetics of the decomposition of deformed austenite were carried out using the method of differential thermal analysis on samples of boron-containing steel with studies of microstructure and hardness. Findings. The kinetics of transformations of structural components was studied and a thermokinetic diagram of the decomposition of deformed austenite of boron-containing steel was constructed, taking into account the influence of hot plastic deformation. The peculiarities of the influence of the cooling rate of deformed austenite on the volume fraction of structural components of the studied steel were revealed. Originality. The influence of temperature-deformation conditions and cooling regimes after deformation on the features of the structure formation of boron-containing steel is shown. The influence of the cooling rate on the nature of the transformations of deformed austenite and the mechanical properties of the studied steel is revealed. Practical value. The conducted studies of the decomposition of hot-deformed austenite of 30G1R steel allow us to reasonably approach the development of modes and production technology for cold-rolling with the formation of optimal properties in the hot-rolled state. Cooling rate intervals have been established that ensure the formation of the required structure, consisting mainly of highly dispersed quasi-eutectoid and self-tempered bainite, which is the basis for the implementation of progressive types of spheroidizing treatments of steel.

Keywords: cooling rate, thermokinetic diagram (TKD), structure, kinetics of austenite transformations, boron-containing steel.

Introduction

A promising area of research aimed at improving the mechanical characteristics of metal for cold volumetric stamping (CVS) is the formation of a controlled structure of the hot-deformed undercut, through the targeted formation of the decomposition structure of hot-deformed austenite and its subsequent controlled

cooling. This is achieved by optimal microalloying of steel with elements capable of significantly increasing the stability of austenite with a shift to the right of the ferrite and pearlite transformation regions on the thermokinetic diagram (TKD) of austenite decomposition. One of these elements that effectively affects the degree of increase in the resistance of austenite to

decomposition is boron.

The issue of providing steel billets with the appropriate structure during heat treatment is directly related to improving the properties of metal products made of boron-containing steels intended for the manufacture of high-strength fasteners [1]. Microalloyed boron-containing steel of the 30G1R brand currently serves as a promising material for the production of fasteners manufactured by cold volume stamping (CVS).

Formulation of the research problem. In the real production process of manufacturing a roll for metal products by hot deformation, the cooling of the roll occurs with a continuous decrease in the temperature of the processed metal, and not under isothermal conditions. That is, in real technological processes, hot plastic deformation (rolling process) violates the equilibrium state of austenite and has a significant impact on the structure and properties of steel [2, 3]. It is known [4] that the properties of steel products are determined by the final structure, which in turn depends on the structures formed at the previous stages of the technology. In particular, it depends on the structural state of austenite formed in hot rolling, depending on the parameters of deformation and subsequent cooling.

The studies conducted in [5, 6] on the kinetics of decomposition of supercooled austenite during continuous cooling concern the regularities of decomposition of austenite, which was in a relatively equilibrium state, since the studied samples of 30G1R steel were subjected to austenization by separate heating. It should be noted that the majority of TKDs for steels listed in the literature are constructed without taking into account the influence of plastic deformation on the transformation of supercooled austenite. This circumstance allows us to assert that such TKDs only approximately reflect the features of the structure formation process in deformed metal. When using such TKD, it is impossible to accurately predict the parameters of heat treatment modes in relation to the technology of production of hot-rolled coiled steel.

In the works [7, 8] it is stated that currently the technology for manufacturing high-strength fasteners is developing in the direction of increasing the degree of compression during cold plastic deformation of hot-rolled (rebellious) billets with a significant complication of the shape of metal products. In this case, the structure and properties of the steel used for the CVS are subject to requirements related to increasing the ductility life and uniformity of the roll structure.

Therefore, to optimize existing technologies for the production of undercuts for high-strength steel, as well as to develop new heat treatment modes in the rolling mill flow, it is most advisable to use TKDs built taking into account temperature-deformation effects on the metal, as close as possible to production conditions.

In view of the above, studying the features of the kinetics of the decomposition of deformed austenite, establishing patterns and determining the conditions for the formation of the hot-rolled structure of 30G1R steel during accelerated cooling at different rates is a relevant task.

Research material and methodology. To determine the conditions for the formation of the hot-rolled structure of 30G1R steel, laboratory studies were conducted on the influence of conditions after deformation cooling of the roll on the kinetics of the transformation of supercooled austenite of the specified steel. Chemical composition of steel, % by mass: C – 0,30; Si – 0,31; Mn – 1,02; S – 0,007; P – 0,024; Cr – 0,20; Al – 0,02; Ti – 0,017; B – 0,0007.

Phase transformations were studied using the differential thermal analysis method [9] on samples of wire rod with a diameter of 6.5 mm made of 30G1R steel with studies of microstructure and hardness. The recording of heating and cooling curves, changes in thermo-EMF during phase transformations was carried out using an automatic potentiometer CTP4-011 and a two-coordinate recorder DDS-002. The study of the metal microstructure was carried out on a light metallographic microscope "Neophot – 21". The hardness of the samples was measured in laboratory conditions using the Vickers scale on a TP-7P1 type device.

The kinetics of phase transformations during the production of rolled products is determined based on the construction of diagrams that take into account the combined effect of deformation, accelerated cooling, and subsequent slowed cooling. In laboratory conditions, rolled steel samples with a diameter of 6.5 mm were subjected to heat treatment under conditions similar to industrial cooling conditions for a round profile. The sample processing modes included austenization at 1100 °C, which corresponds to the temperature of the billets before the first stand of the rolling mill. The deformation of the samples was carried out in one pass with a degree of 35%, which corresponds to the rolling modes in production conditions. The rolling temperature of the laboratory samples was 1030–1050 °C and corresponded to the temperature of the metal exit from the finishing stand of the rolling mill.

Presentation of the main research material. In laboratory work, the continuous-sequential effect of hot plastic deformation and cooling regimes on the kinetics of phase transformations of 30G1R steel was investigated. The influence of the deformation temperature of 1030...1050 °C on the position of the regions of formation of intermediate transformation products, the position of the boundaries of the decomposition regions in the case of a combination of plastic deformation and cooling conditions that correspond to the production technology of high-quality undercuts was determined.

To prevent partial decomposition of austenite after hot deformation in laboratory conditions, the samples were rapidly cooled from the end of rolling temperature at a rate of 230–250 °C/s to temperatures in the range of 835–390 °C with subsequent slow cooling to room temperature (the cooling rate was 0,06–0,09 °C/s).

The results of experimental studies are summarized in the form of a TKD, which is presented in fig. 1.

The conducted studies have established that the TKD of the decomposition of deformed austenite of

30G1R steel has the following transformation regions: ferritic, pearlitic, intermediate and martensitic.

Hot deformation under the specified temperature-deformation regimes and intensive cooling to temperatures of 390 °C and 450 °C with subsequent slow cooling ensure the decomposition of austenite mainly by an intermediate mechanism with the formation of 90 - 95% bainite and the rest - martensite. Such a structure

is formed due to the preferential suppression of diffusion processes of austenite decomposition, (fig. 2 a). It is noteworthy that both structural components are in a self-tempered state due to the decomposition of austenite under semi-isothermal conditions, as evidenced by the rather low hardness value of the steel, which is 272 - 248 HV.

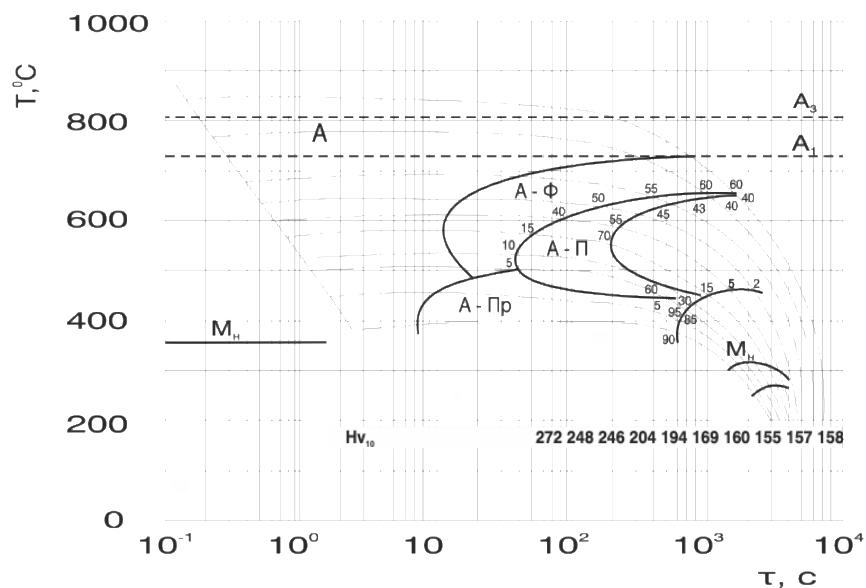


Fig. 1. Thermokinetic diagram of the decomposition of deformed austenite of 30G1R steel, rolled at 1030–1050 °C with a degree of deformation of 35%, with continuous cooling at different rates

When the temperature of the end of intensive cooling after deformation is increased to 500 °C, the first products of purely diffusion decomposition of supercooled austenite are observed in the structure: 5% ferrite and 5% quasi-eutectoid (cane-sorbite-like pearlite, fig. 2 b) and the rest is bainite. At the same time, the hardness of the steel practically does not change and is 246 HV.

A sharp increase in the amount of these structural components, especially the quasi-eutectoid (up to 60%), is observed when the temperature at the end of intensive cooling increases to 530 - 575 °C (fig. 2 c). Analysis of the TKD of 30G1R steel shows that with a decrease in the temperature of the end of intensive cooling, the temperature of the eutectoid decomposition also decreases, as a result, the degree of pearlite dispersion increases. At the same time, it should be noted that quasi-eutectoid cementite has not only a high degree of dispersion (which is assessed according to scale 1 of DSTU 9074:2021 and is identified as pearlite of the 1st point) and a shape similar to spherical, but also a fairly uniform distribution of structures across the cross section of the section.

Such a structural state can positively influence the formation of optimal structures during subsequent heat treatments. The hardness of steel due to the specified

structural changes is significantly reduced to a value of 194 HV.

Increasing the temperature of the end of intensive cooling to 610-700 °C leads to a sharp decrease in the steel structure of bainite and martensite (up to 2-5%) and the predominant formation of polyhedral or dendritic ferrite morphology (up to 55%), which is presented in fig. 2 d. The hardness of steel under the considered processing modes is 155 HV.

Intensive cooling in the supercritical and intercritical temperature range (760 – 835°C) with subsequent slow cooling in the temperature range 640 – 725°C, diffusion processes of formation of polyhedral ferrite or ferrite of dendritic morphological type (60%) and dispersed pearlite (40%) occur – fig. 2 f. At the same time, the hardness value of the steel increases slightly to 157 – 158 HV.

A decomposition diagram of hot-deformed austenite of 30G1R steel has been constructed, which allows a scientifically sound approach to the development of heat treatment regimes for cold-rolling with the formation of both optimal properties of the metal in the hot-rolled state and the formation of its optimal structure for subsequent heat treatment with separate heating.

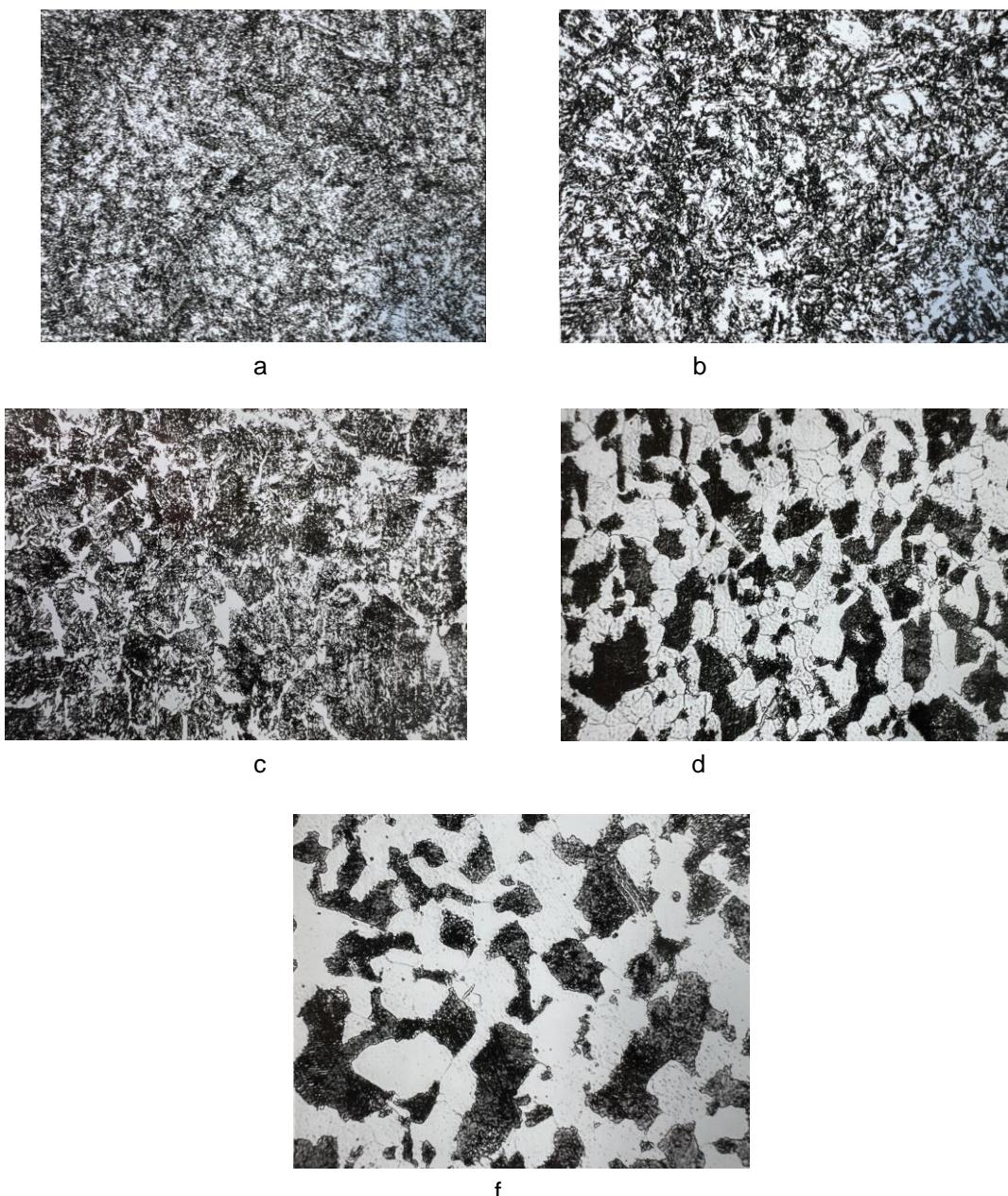


Fig. 2. Microstructure of hot-rolled samples of 30G1R steel, cooled in different modes, x500: temperature of the end of cooling of samples (cooling): a – 390 °C;

b – 530 °C; c – 575 °C, d – 700 °C; f – 760 °C

Conclusions. The influence of temperature-deformation conditions of rolling and cooling modes after deformation on the features of the structure formation of 30G1R steel has been established. The temperature intervals and kinetics of the decomposition of deformed austenite and the regularities of the formation of the structure of boron-containing steel grade 30G1R

during cooling at different rates were studied. The results of the research are presented in the form of a thermokinetic diagram of the decomposition of deformed austenite of 30G1R steel. The conducted research can be used to develop heat treatment regimes integrated into the production line of hot-rolled strip, which is used for CVS of high-strength fasteners.

Перелік посилань

1. Парусов В. В., Парусов О. В., Сичков О. Б. Прокат з борвмісних сталей для високоміцних кріпильних виробів. Дніпропетровськ : АРТ-ПРЕС. 2010. 160 с. ISBN 978-966-348-226-2.
2. Дейнеко Л., Клименко О. П., Гуль Ю. П., Карнаух А. І. Дослідження впливу технологічних параметрів на кінетику розпаду аустеніту сталі 08Г2С. *Будівництво, матеріалознавство, машинобудівництво*. 2002. Вип. 15. С. 106 – 111. ISBN 966-7282-64-3.
3. Соболенко М. О., Алєксєєв М. О. Дослідження впливу технологічних параметрів на кінетику розпаду аустеніту борвмісної сталі. *Збірник наукових праць НГУ*. 2024. № 78. С. 217-224. <https://doi.org/10.33271/crpnu/78.217>

4. Узлов І. Г., Савенков В. Я., Поляков С. Н. Термічна обробка прокату. Київ: Техніка, 1981. 159 с.
5. Соболенко М. О., Романова Н. С. Кінетика розпаду аустеніту при безперервному охолодженні недеформованої борвмісної сталі 30Г1Р. *Теорія і практика металургії*. 2023. № 4. С. 52 – 57. <https://doi.org/10.34185/tpm.4.2023.07>
6. Соболенко М. О., Кокашинська Г. В. Дослідження кінетики розпаду недеформованого переохолодженого аустеніту боровмісної сталі. XVIII Міжнародна конференція «Стратегія якості в промисловості і освіті». м. Варна. 3 – 6 червня 2024. Технічний університет м. Варна. 2024. С. 122 – 125.
7. Парусов Е. В., Губенко С. І., Клименко О. П., Чуйко І. М., Сагура Л. В. Особливості кінетики розпаду аустеніту і закономірності формування структури сталі С82D за безперервного охолодження. *Вісник Придніпровської державної академії будівництва та архітектури*. 2018. № 2. С. 16 – 25. ISSN 2312-2676. DOI: 10.30838/J.BPSACEA.2312.290818.16.85
8. Парусов Е. В., Губенко С. І., Клименко О. П., Чуйко І. М., Сагура Л. В. Особливості кінетики розпаду аустеніту і закономірності формування структури сталі С82D_{Cr} за безперервного охолодження. *Вісник Придніпровської державної академії будівництва та архітектури*. 2017. № 6. С. 27 – 36.
9. Клименко О.П., Карнаух А.І., Буря О.І., Ситар В.І. 2008. Диференційно- термічний аналіз та технології термічної обробки: монографія. Дніпропетровськ: Пороги. 2008. 322 с.

References

1. Parusov, V. V., Parusov, O. V., & Sychkov, O. B. (2010). Rolled products from boron containing steels for high-strength fasteners. ART-PRESS.
2. Deyneko, L., Klymenko, O. P., Gul, Y. P., & Karnaugh A. I. (2002). Research into the influence of technological parameters on the kinetics of austenite decomposition of steel 08G2S. *Construction, materials science, mechanical engineering*, 15, 106-111.
3. Sobolenko, M. O., & Alekseev, M. O. (2024). Investigation of the influence of technological parameters on the kinetics of decomposition of austenite in boron-containing steel. *Collection of scientific works of NSU*, 78, 217-224. <https://doi.org/10.33271/crpnu/78.217>.
4. Uzlov, I. G., Savenkov, V. Ya., & Polyakov, S. N. (1981). *Heat treatment of rolled products*. Tekhnika.
5. Sobolenko, M. O., & Romanova, N. S. (2023). Kinetics of austenite decomposition during continuous cooling of undeformed boron-containing steel 30G1R. *Theory and practice of metallurgy*, 4, 52-57.
6. Sobolenko, M. O., & Kokashinska, G. V. (2024). Research on the kinetics of the decomposition of undeformed supercooled austenite of boron-containing steel. XVIII International Conference "Quality Strategy in Industry and Education". Varna. June 3 - 6, 2024. Technical University of Varna. P. 122-125.
7. Parusov, E. V., Hubenko, S. I., Klymenko, O. P., Chuiiko, I. M., & Sahura, L. V. (2018). Особливості кінетики розпаду аустеніту і закономірності формування структури сталі С82D за безперервного охолодженні. *Visnyk Prydniprovskoi derzhavnoi akademii budivnytstva ta arkhitektury*, 2, 16-25. <https://doi.org/10.30838/J.BPSACEA.2312.170118.34.38>
8. Parusov, E. V., Gubenko, S. I., Klymenko, O. P., Chuyko I. M., & Sagura, L. V. (2017). Peculiarities of the kinetics of austenite decomposition and regularities of the formation of the structure of C82DCr steel during continuous cooling. *Bulletin of the Pridneprovsk State Academy of Civil Engineering and Architecture*, 6, 27-36.
9. Klymenko, O. P., Karnaugh, A. I., Burya, O. I., & Sitar, V. I. (2008). *Differential thermal analysis and heat treatment technologies: monograph*. Dnipropetrovsk. Porogy.

Надіслано до редакції / Received: 08.07.2025
Прийнято до друку / Accepted: 08.12.2025

Mishalkin A.P., Kamkina L.V., Ivashenko V.P., Ankudinov R.V. Avtonomov D.V.

Analysis of the possibilities of creating an autonomous energy supply system for metallurgical production using hydrogen technology and using the physical heat of metallurgical equipment

Ukrainian State University of Science and Technologies, Dnipro, Ukraine

Мішалкін А.П., Камкіна Л.В., Іващенко В.П., Анкудінов Р.В., Автономов Д.В.

Аналіз можливостей створення автономної системи енергозабезпечення металургійного виробництва з використанням водневих технологій та фізичного тепла металургійного обладнання

Український державний університет науки і технологій, м. Дніпро, Україна

Анотація. Генерація ресурсів енергії автономної системи енергозабезпечення, їх раціональне за витратами та ефективне за результатами використання, сприяє забезпеченню сталого розвитку підприємства. В умовах її адаптованості до особливостей металургійного виробництва використання її потенціалу, незалежно від зовнішніх енергопостачальників, дозволить знизити собівартість продукції, мінімізувати втрати енергії та шкідливі викиди. Загалом - підвищити енергоефективність технологічних процесів і конкурентоспроможність металургійної галузі. **Мета дослідження.** Встановлення можливості реалізації в замкнутій, автономній та самодостатній системі енергозабезпечення, що адаптована до умов металургійного виробництва, інтеграція корисних енергетичних властивостей вихідного потенціалу електролізного водню та вторинного потенціалу фізичної теплоти, що є частиною енергії теплового балансу металургійних процесів, яка втрачається. Серед перспективних шляхів і ефективних способів забезпечення металургійних підприємств енергоресурсами, в умовах їх сучасного розвитку, стають: використання відновлюваних джерел електроенергії, інтеграція водневих технологій, залучення в основні процеси вторинних енергетичних ресурсів, застосування локальних енергокомплексів на основі більш повного використання потенціалу їх корисних властивостей. За результатами дослідження, реалізація замкнутої системи енергозабезпечення, як теплової інтеграції складових потенціалу водню, визначено, що вона може бути корисною в разі використання залишкової фізичної теплоти металургійного виробництва, що втрачається, в якості додаткового джерела електроенергії виробництва електролізного водню, але не як електрично самодостатній замкнений цикл. Застосування в комплексі з металургійними процесами/агрегатами, де є значний потенціал для генерації залишкової фізичної теплоти газів та шлаків, є обмеженим, але важливим для зниження питомих витрат енергоресурсів на виробництво електролізного водню. Показано, що в замкнутій автономній системі забезпечення енергоресурсами при регенерації корисних властивостей потенціалу електролізного водню можуть виникати як позитивні так і негативні, за впливом на систему, ефекти синергії. Синергія в замкненій автономній системі енергозабезпечення може бути критично важливим фактором - джерелом додаткової ефективності, але лише за умови ефективного використання складових системи та грамотного технологічного контролю за ним.

Ключові слова: ресурси енергії; замкнута система, електроліз, водень.

Abstract. Generation of energy resources of an autonomous energy supply system, their rational in terms of costs and effective in terms of results of use, contributes to ensuring sustainable development of the enterprise. In the conditions of its adaptation to the peculiarities of metallurgical production, the use of its potential, regardless of external energy suppliers, will allow to reduce the cost of production, minimize energy losses and harmful emissions. In general, to increase the energy efficiency of technological processes and the competitiveness of the metallurgical industry. Purpose of the study. Establishing the possibility of implementing in a closed, autonomous and self-sufficient energy supply system, adapted to the conditions of metallurgical production, the integration of useful energy properties of the initial potential of electrolysis hydrogen and the secondary potential of physical heat, which is a part of the energy of the heat balance of metallurgical processes that is lost. Among the promising ways and effective methods of providing metallurgical enterprises with energy resources, in the conditions of their modern development, are: the use of renewable sources of electricity, the integration of hydrogen technologies, the involvement of secondary energy resources in the main processes, the use of local energy complexes based on a more complete use of the potential of their useful properties. According to the results of the study, the implementation of a closed energy supply system, as a thermal integration of the components of the hydrogen potential, it was determined that it can be useful in the case of using the residual physical heat of metallurgical production, which is lost, as an additional source of electricity for the production of electrolysis hydrogen, but not as an electrically self-sufficient closed cycle. Application in combination with metallurgical processes/units, where there is a significant potential for generating residual physical heat of gases and slags, is limited, but important for reducing the specific energy costs for the production of electrolysis hydrogen. It is shown that in a closed

autonomous energy supply system, during the regeneration of the useful properties of the electrolysis hydrogen potential, both positive and negative synergy effects may occur, in terms of their impact on the system. Synergy in a closed autonomous energy supply system can be a critically important factor - a source of additional efficiency, but only under the condition of effective use of the system components and competent technological control over it.

Keywords: energy resources, closed system, electrolysis, hydrogen.

Introduction. In the current conditions of development of metallurgical production, one of the key tasks is to increase its energy efficiency and reduce the negative impact on the environment. Traditional energy supply systems based on the use of fossil fuels are exhausting their potential, increasingly giving way to autonomous and innovative technologies. Among the main areas of autonomous energy supply of ferrous metallurgy processes, it is worth noting:

1. Use of renewable sources of electricity (solar and wind power plants, geothermal and bioenergy methods), integrated directly into the production infrastructure.

2. Introduction of hydrogen technologies both to replace traditional carbon technologies with direct iron reduction processes, and to accumulate and store energy in the form of "green hydrogen".

3. Application of secondary energy resource utilization systems (heat of by-gases and slags of blast furnace, ferroalloy and converter production) with subsequent use of physical and chemical energy in the main metallurgical processes and processing into electricity.

4. Local systems of energy complexes and microgrids, which provide flexible management of energy flow distribution and minimize their losses during transportation.

5. Integration of digital control systems (smart grid, monitoring and forecasting systems of consumption), which allow optimizing production loads and reducing specific energy consumption.

The implementation of these areas creates the prerequisites for the formation of innovative and environmentally balanced metallurgy, where autonomous energy sources are combined with the latest metal processing technologies. This opens up prospects for reducing the carbon footprint of production, increasing its competitiveness and transition to a "green" economy of the future.

Analysis of autonomous closed systems for the production of energy resources and the likely results of their implementation at metallurgical enterprises. In the current conditions of global challenges associated with the energy crisis and the need to reduce greenhouse gas emissions, metallurgical production requires fundamentally new approaches to energy supply. One of the priority areas may be the implementation of autonomous energy production and storage systems that can increase the efficiency of technological processes, reduce dependence on fossil resources and promote the transition to environmentally friendly metallurgy.

Among the most promising ways to provide enterprises with energy resources, we can single out: the use of renewable energy sources, the integration

of hydrogen technologies, the utilization of secondary energy resources, the use of micro-macro networks and local energy complexes in combination with digital management systems. The integrated application of these solutions creates the prerequisites for the formation of a new model of ferrous metallurgy - energy-efficient, innovative and environmentally friendly.

The importance of the results of solving the identified problem is emphasized by the author [1]. Based on the analysis of the results of modern domestic and world research, taking into account the urgent need to apply innovative methods of energy accumulation, the author concluded that "the demand of our time is the development of scientifically sound tools for the practical implementation of decentralized heat supply based on alternative heat generators and hybrid means of accumulating energy resources for a wide range of sectors of the economy." At the current stage of development of scientific knowledge and technologies of "green metallurgy", the following negative challenges and its current unresolved problems should be recognized:

- high energy intensity of obtaining electrolytic hydrogen - from 50 to 55 kWh per 1 kg of hydrogen;

- discrepancy between the price of "green hydrogen", which is 2-3 times higher than "gray" hydrogen or coke, and the needs for a stable and cheap source of "green" electricity;

- lack of reliable and effective technological schemes and devices to ensure the safe supply of pure hydrogen to the furnace or other thermal unit.

Therefore, it is advisable to remember that the use of electrolysis in industrial conditions without the use of cheap sources of electricity will not become systemic, and hydrogen can be obtained less expensively from fossil fuels, natural gas, for example.

Regarding the sources of chemical energy, which is necessary for the implementation of modern metallurgical processes, the technologies of which are based on the reduction of iron from enriched iron ore concentrates, which have a physicochemical orientation. Hydrogen is one of the most promising energy resources, the useful properties of the initial potential of which can provide, subject to a significant reduction in the price of its production, metallurgical production with chemical (reducing agent), thermal (fuel) energy. Thus, the recycling of the components of the initial potential of hydrogen is able to provide energy for the successful implementation of the main stages of the end-to-end technology of steel production by creating thermodynamic conditions for the implementation of externally controlled physicochemical transformations in a given direction with the expected speed and final result.

One of the directions of rational use of the useful

properties of the initial potential of hydrogen and the secondary potential of physical heat, which is a part of the energy of the heat balance of melting metals and alloys, which is lost for objective reasons, in our opinion, is their combination (integration) in a centralized, closed, autonomous, self-sufficient and adapted to the requirements and features of production system. It is obviously capable of ensuring its stability when implementing the following scheme of energy generation: "residual physical heat lost during the implementation of relevant metallurgical processes → electrical energy for powering electrolyzers or other devices → hydrogen". In more detail, the mechanism and features of the implementation of the proposed scheme are expedient to determine as follows. The residual physical heat that is lost is accumulated in the products of the relevant processes: gases, slag, lining and metal housings of thermal units. Existing methods of its use allow generating the physical heat of gases and slag into steam, and subsequently obtaining electricity. The unused portion that is lost remains that which accumulates in the metal housings of thermal units.

Justification of a system of autonomous, self-sufficient provision of metallurgical production with environmentally friendly energy resources.

The system can be implemented through a system of mutual connections and influence of energy resources that are of artificial origin or are naturally renewable and capable of regeneration due to controlled external influence [2].

A structured scheme of autonomous energy supply of metallurgical production in the form of blocks and a logical chain "generation → recycling → effects → result" is expedient to present in the following way:

1. Generation of energy resources:
 - use of hydrogen as an energy carrier (electrolysis, renewable processes);
 - involvement of renewable energy sources (solar, wind, bioenergy);
 - production of electricity by local installations (gas turbines, fuel cells);
2. Recycling of energy resources:
 - utilization of physical heat of blast furnace, coke oven and converter gases;
 - use of physical heat and chemical energy of molten slags;
 - reuse of by-products of thermal processes (recycling of waste of technogenic origin).
3. Effects of implementation:
 - reduction of dependence on external energy suppliers;
 - rationalization of energy and fuel costs;
 - reduction of CO₂ emissions and other pollutants;
 - optimization of the cost of metal products.
4. Result of implementation:
 - stable, safe and uninterrupted operation of metallurgical units;
 - increase in energy efficiency of production in general;
 - environmental sustainability and innovativeness of the metallurgical industry;
 - increase in the competitiveness of the enterprise in the world market.

The externally controlled interaction of blocks, a logically defined chain, determines the capabilities of the autonomous supply system and the level of its self-sufficiency. In autonomous closed energy supply systems of metallurgical production, synergy effects of both positive and potentially negative impact on the system may arise

Table 1 Synergy effects in closed autonomous systems for energy generation and recirculation

No.	Type of synergy effect	Impact on the system	Consequence for the functioning of metallurgical production
1	Positive – energy isolation	Balance of energy generation and recycling	Reduced dependence on external suppliers, stable operation of units
2	Positive – increased efficiency	Integrated use of hydrogen, secondary gases, heat of waste streams	Increase in the efficiency of energy components, reduction of production costs
3	Positive – environmental effect	Reduction of CO ₂ and harmful substances emissions into the environment	Increasing environmental sustainability and compliance with international standards
4	Positive – reliability	Energy backup thanks to the use of combined sources	Continuity and stability of technological processes even at peak loads
5	Negative – difficulty in driving	The need for multi-thread integration	High requirements for automation and digital monitoring
6	Negative – uneven formation of resources	Cyclical nature of the emergence of secondary energy resources	Possible imbalances in supply and energy losses in the absence of storage systems
7	Negative – technological risks	Explosiveness and specificity of the influence of hydrogen properties	Increased requirements for safety, workers and equipment
8	Negative – capital intensity	Significant investment costs for implementation	Slow scaling of the system without state support, grants, investments

The impact of effects on the functioning of the system is realized:

- with a reasonable balance, the positive effects of synergy dominate, the system becomes more stable, more cost-effective, and the level of environmental cleanliness increases;

- if negative factors are not taken into account, energy imbalance, overloading of the system may occur, which will become a source of accident risks and a reason for a decrease in its energy efficiency.

The introduction of intelligent control systems (digital modeling, IIoT, big data analytics [3]) will obviously allow to coordinate all flows of energy source regeneration and minimize the occurrence of negative synergistic effects. That is, synergy in a closed autonomous energy supply system can be a critically important factor - a source of additional efficiency, but only if competent technological control is carried out.

It should be noted that the level of efficiency of the autonomous power supply system is significantly influenced by the state of the fuel and resource base of traditionally used materials, the potential of which is exhaustive [4].

The idea of "closing" the life cycle of the beneficial properties of hydrogen by installing thermoelectricity on hot cases, at first glance, is quite logical as a first assumption. But if we take into account industrial temperatures and the real capabilities of serial TEGs (thermoelectric generators), it turns out that the electricity (hereinafter referred to as electricity) that a certain number of TEGs can generate will not be enough, to make the cycle self-sufficient, ultra-large heat flows and active areas are needed. Therefore, the closed circuit "electrolysis → H₂ → back into electricity" is likely to require the use of an additional source of electricity to power the electrolyzers.

Thus, the efficiency of industrial TEGs based on Bi₂Te₃/PbTe today is mostly ~ 5–8%. (in the conditions of laboratory experiments, in the serial industry, this figure is lower). Typical specific power/efficiency of TEGs at ΔT ~150–200 °C, according to data [5], are units to tens of watts per module with dimensions of 40×40 mm, which means the need to have extra-large areas and massive heat exchangers/radiators.

To determine the system position based on indisputable facts, it is necessary to establish the reality of the implementation of the scheme with the use of residual heat, which "seems" free. Calculations of the higher calorific value of hydrogen, which is determined from the enthalpy of liquid water formation under standard conditions, i.e. includes both the heat of reaction and the heat of condensation of water vapor, show that its value is 39.4 kWh/kg.

The reverse conversion of H₂→electricity by combustion of hydrogen in a fuel cell gives according to calculations 50-60% of LHV, i.e. ~16-20 kWh/kg; gas turbine/internal combustion engine — even lower (~35–45% → ~12–15 kWh/kg).

It turns out that, even in the ideal case of SOEC with "free" heat, to implement the direct stage of the hydrogen life cycle "electricity → electrolysis" it is

necessary to use ~28–30 kWh/kg, and when implementing the reverse stage, the electricity that can create hydrogen combustion ("hydrogen combustion → electricity") is only ~16–20 kWh/kg for (PEM-FC) or ~12–15 kWh/kg when using a turbine. And to obtain 1 kWh of electricity, it is necessary to use ~7–10 kWh of heat. Against the background of the needs of ~28–30 kWh/kg of H₂, these are huge heat flows. That is, the electrical balance of the closed circuit under study will always be in the negative. "Free" heat helps to reduce the electrolyzer's electricity consumption, but does not make the cycle self-sufficient in electricity.

However, the scheme of regeneration of the initial useful properties of the potential of hydrogen as an important energy resource for metallurgical production can be useful for: reducing the specific electricity consumption of hydrogen in high-temperature electrolyzers (SOEC + waste physical heat, which has a secondary origin); improving the overall heat balance of the relevant workshops due to: heating water, steam production, recovery of secondary energy of exhaust gases - products of metallurgical processes, preliminary drying of the components of the initial charge); using H₂ as a reducing agent in DRI/DRH - all these are factors that contribute to obtaining the greatest process gain, for example, in the kinetics of metallurgical reactions, in ecology by reducing CO₂ emissions.

If measured by the consumption of electrical energy (it is she who feeds the electrolyzer), then, even with "free" heat, the electrolyzer consumes more kWh_per 1 kg of H₂ than can be returned from this kilogram of hydrogen in the form of kWh when it is burned.

Therefore, the idea of a closed energy supply system should be defined as useful as thermal integration, which will reduce electricity consumption for hydrogen production, but not as an electrically self-sufficient closed cycle. And its application in combination with metallurgical processes/units, where there is a significant potential for generating residual physical heat of gases and slags, is limited.

For a well-founded determination of the advantages and disadvantages of a closed energy consumption system, it is advisable to determine the technical characteristics of its components, namely high-temperature electrolyzers, thermoelectric generators, regarding the compatibility of their capabilities, as elements of the system for regenerating their properties.

Thermoelectric generators (TEG) are installed on heat-generating areas of metallurgical equipment, in particular on the external surfaces of furnaces, converters or heat-conducting channels through which hot exhaust gases are discharged. The hot side of thermoelectric modules is placed on the surface of their housings, in contact with it, and the cold side is cooled using water or air cooling.

To determine the effectiveness of the use of existing types of TEGs, let's turn to actual data and

analyze their real capabilities:

- The efficiency of industrial TEGs based on $\text{Bi}_2\text{Te}_3/\text{PbTe}$ today is mostly ~5–8% (in the best cases of laboratory materials - higher, but this is not a serial industry) [5];
- A high-temperature SOEC electrolyzer with heat supply gives ≈ 36 – 40 kWh_electricity/kg H_2 ;
- The typical specific power/efficiency of TEGs at $\Delta T \sim 150$ – 200 °C is units to tens of watts per 40×40 mm module according to their technical data.

In a system implementation, this means large areas and massive heat exchangers/radiators.

It is advisable to determine the parameters of technical support for the use of physical heat accumulated in the metal housings of thermal units, in conditions of practically no traffic, unlike exhaust gases and slags - waste from metal smelting.

First, let's determine the number and area required to accommodate the appropriate number of TEGs, which will provide electricity to the high-temperature electrolyzer, which in turn - hydrogen in an amount sufficient to produce 10 tons of iron per day by its direct reduction.

Secondly, when calculating the number of thermoelectric generators required to produce 10 tons of iron per day, the following initial data were

determined and the following assumptions were made:

- raw material - hematite Fe_2O_3 ; main reaction: $\text{Fe}_2\text{O}_3 + 3 \text{H}_2 \rightarrow 2 \text{Fe} + 3 \text{H}_2\text{O}$;
- 625 TEG modules can be placed on 1 m^2 of the surface of the heated unit housing;
- linear approximation of module performance $\Pi \propto \Delta T$;
- cold side $T_{\text{cold}} = 30$ °C;
- consider options with $T_{\text{hot}} = 200, 300, 400, 500$ °C.
- electrolyzer — high-temperature SOEC, which consumes 36 kWh/kg H_2 [6].

Для розрахунку показників, що приведені в табл. 2, використані дані з [6], it also gives the initial factors that affect the calculation results: the cold side of the module is 30 °C, the surface temperatures of the industrial unit housing (hot side of the modules) in °C are 200, 300, 400 and 500. Also, for these conditions, the corresponding values of the electric power of the TEG modules (SOEC) are determined. Data on the influence of the characteristic temperatures and technical capabilities of thermal electric generators (TEG) on the electric power are summarized in the following table. 2.

Table 2 – Influence of the characteristic temperatures and technical capabilities of thermal electric generators (TEG) on the electric power

No	T_{hot} (°C)	ΔT (°C)	P according to option A, W/module	P according to option B, W/module
1	200.0	170.0	3.107	5.667
2	300.0	270.0	4.935	9.0
3	400.0	370.0	6.763	12.333
4	500.0	470.0	8.591	15.667

The analysis of the data given in [7] allows us to determine the following. A target electrolyzer of 100 kg H_2 /day (≈ 4.17 kg/h) when using a TEG (SOEC) delivering 40 kWh/kg requires ≈ 167 kW of electricity continuously. If the efficiency of TAGS is 5–8% [8], to achieve this indicator, it is necessary to create a heat flux of about $167 \text{ kW}/0.08 \approx 2.1 \text{ MW}$ (for 8%) or $167/0.05 \approx 3.3 \text{ MW}$ (for 5%). That is, in order to remove 2÷3 MW from the heated surfaces of metallurgical units and, at the same time, it is necessary to stably keep the other side of the TEG cool and fulfill the condition $\Delta T = \text{const}$. This is already a different level – for example, the level of a much higher volume of heat recovery of exhaust heated gases.

If we take an optimistic commercial figure of ~10 W from a 40×40 mm (16 cm^2) module and a high ΔT value, then the need to obtain **16700** W requires ≈ 16700 modules, i.e. $\sim 267 \text{ m}^2$ of active area for the placement of TAGs. Even if the electrolysis is partially or completely "powered" by the TEG, the reverse conversion of $\text{H}_2 \rightarrow$ electricity from the use of a fuel cell to burn a fraction of hydrogen (the efficiency of PEM is ~55%) will yield less kWh_of electricity than will be spent on electrolysis. Below are the main results of calculating the amount of hydrogen for the production of

10 tons of Fe, explanations and practical conclusions are made regarding the probability of implementing the process in a closed system.

1. Calculation by stoichiometry of the reaction $\text{Fe}_2\text{O}_3 \rightarrow \text{Fe}$ allows you to determine the mass of H_2 required for the production of 10 tons of iron by the method of its direct reduction: ≈ 541.499 kg H_2 (54.15 kg H_2 per 1 ton of Fe) or 0.05415 kg H_2 per 1 kg Fe).

2. Electricity required to produce a given amount of hydrogen when using a high-temperature SOEC electrolyzer:

- energy for electrolysis is: $541.499 \text{ kg} \times 36 \text{ kWh/kg} \approx 19494 \text{ kWh}$ ($\approx 19.5 \text{ MWh}$ per 10 t Fe);

- if you produce 10 tons of Fe evenly in 24 hours, you need to provide a continuous power of ≈ 812.25 kW;

- for the production of 1 ton of Fe, it is necessary to spend ≈ 81.23 kW of electricity.

3. The amount of electricity that 1m^2 of the heated surface of the metal body of the melting unit can provide, on which 625 TEG modules of 40×40 mm can be placed (cold side temperature 30 °C) and calculation of the total area for their placement:

The calculations were carried out for the performance of one TEG module, respectively, in W/module

3.29 – according to the conservative option (A) and 10.0 – according to the standard option (B).

For $Thot = 200/300/400/500$ °C, ΔT is, respectively, 170/270/370/470 °C:

According to option A (3.29 W/module), $Thot = 200$ °C and $\Delta T = 170$ °C:

- electric power - P (kW/m²) is approximately 1.947; 3,245; 4,543; 5.841. Change interval (1.95 ÷ 5.84 kW/m²).

- the required area of TEG (m²), which will provide 812.25 kW: ≈ 416.9 m² for 200°C; 250.4 m² for 300°C; 178.9 m² for 400°C and 139.2 m² for 500°C;

According to option B (10 W/module), $Thot = 300$ °C and $\Delta T = 270$ °C:

- electrical power P (kW/m²) is approximately 3.125; 5,208; 7.292 and 9.375 - (3.13 ÷ 9.38 kW/m²);

- required TEG area (m²) for 812.25 kW: ≈ 259.9 m² for 200°C; 156.1 m² for 300°C; 111.5 m² for 400°C and 86.6 m² for 500°C.

The results of the study show that the installation of TEGs in the fuel generating areas of metallurgical units (metal casings of blast furnaces, oxygen converters, mixers and other thermal units and equipment) is a rather important technical solution from the point of view of the use of energy from secondary sources. Its introduction will ensure an increase in the level of energy efficiency of a metallurgical enterprise with integrated hydrogen production, which is used at one of the important stages of the end-to-end technology of steel production - direct reduction of iron.

Such a solution will allow you to use thermal energy, which only heats the air around, is practically free of charge and allows you to "reduce energy consumption from external sources and does not require significant costs.

4. Interpretation of calculated indicators and practical conclusions

The amount of H₂ to produce 10 tons of Fe is ≈ 541.5 kg, which gives an idea of its scale (hundreds of kilograms of H₂ per day).

The need to have a constant, continuously stable electrical power of TEGs at the level of ≈ 0.81 MW. To power the SOEC type electrolyzer, exclusively by heating the TEG from the housings of thermal units, it is necessary to have hundreds of square meters of their surface to accommodate the TEG modules.

Areas of hundreds of m² are realistic, but not trivial, because it is necessary to solve the issues of installation costs, accessibility of the surface of the enclosures, the availability of area for the placement of TAGS at the appropriate ΔT values, the conditions of heat transfer and cooling of the "cold side" of the modules, mechanical resistance, the cost of the modules, their moral and physical wear and maintenance of the modules, which is also important.

Burning a certain fraction of hydrogen, if it is excess for the needs of iron recovery, and creating a reserve seems to be a technically correct solution. But using the capacities of TEGs of modern modifications, from the point of view of economic sense, for burning hydrogen without a significant reduction in the price of

its production of hydrogen using high-temperature electrolyzers, is not an effective solution.

An important fact that must be taken into account when solving similar problems is that a completely "closed" regeneration scheme, where the heat of the heated bodies of the melting units → electricity → electrolysis H₂ → Fe₂O₃ recovery → combustion of a fraction of H₂ → heat → electricity to power the electrolyzers → H₂, even theoretically, cannot exist due to energy losses, according to the 2nd law of thermodynamics (heat of combustion of H₂ < electricity consumption for electrolysis). But it is advisable to implement the regeneration system links by utilizing the energy of secondary sources of steelmaking production for electric feeding and heating of electrolyzers (especially of the SOEC type).

According to the data given in [5,9], even when using SOEC, the electricity consumption per 1 kg of H₂ remains higher than its electrical value during the reverse transformation through the combustion of H₂ (heat → electricity → electrolysis hydrogen), and the switching losses at each step of the physicochemical transformations make complete "regeneration" impossible.

Summing up the interim conclusion of the study, it is necessary to determine that parts of the closed chain of transformations of the closed circuit as the subject of the study have already been partially implemented according to the scheme WHP → steam/electricity → SOEC; H₂-DRI; utilization of waste/heat of liquid steel for hydrogen production). But a closed life cycle of H₂ regeneration in industrial production cannot exist due to fundamental losses, which are objective.

It is advisable to comment on the regenerative scheme of using the properties of the components of the WHP → steam/electricity → SOEC scheme, having determined the functional aspects of their transformation.

1. WHP (Waste Heat Potential). The source is secondary energy resources, in particular the heat of gases - products of metallurgical processes, the heat of cooling of metallurgical units and other thermal units. Their properties are realized as low and medium potential energy, which is traditionally difficult to utilize.

2. The intermediate stage of transformation of secondary industrial heat into steam or electricity. It is realized through waste heat recovery boilers or ORC systems, where the waste heat is converted into technical steam or electricity. Physicochemical processes at this stage are indirect - heat converts the working fluid (H₂O, organic liquids) into another energy state.

An important point of transformation is that the concentration and improvement of energy quality occurs according to the scheme low-potential heat → electricity or steam under pressure.

3. SOEC (Solid Oxide Electrolysis Cell). The obtained electricity and steam are used to implement the electrolysis of water at high temperatures (700–850

°C). The following processes are implemented in this process:

- electricity provides electrochemical splitting of the H_2O molecule;
- steam reduces the need for electrical energy (part of the energy is supplied in the form of heat).

At the output after the regeneration-transformation cycle of the initial properties of the system elements by separation, individual streams of high-purity hydrogen (H_2) + oxygen (O_2) are obtained.

The features that determine the functional aspects of regeneration are:

4. Functional-regenerative aspect of regeneration. The system of physicochemical transformations works as a closed loop of transformation of its initial elements according to the scheme: secondary physical heat → higher quality energy carriers → chemical energy carrier (H_2);

The complex of physicochemical transformations is carried out by:

- transition of heat into phase changes (evaporation/condensation);
- electrochemical decomposition of water into hydrogen and oxygen;
- regeneration of the thermal part by using high-temperature waste in SOEC for electricity.

5. The main features as characteristic features of the processes in the system include:

- regenerativity, as an important feature of the system, is characterized by the involvement of waste streams and their "refueling" in a new energy exchange cycle;

- the exergy effect is realized through an increase in the share of useful energy, the source of which is secondary waste energy;

- system flexibility - hydrogen, as a result of the implementation of processes in the system, can be reused in production (metallurgy, as a fuel element of the system and energy storage).

Thus, the WHP→steam/electricity→SOEC scheme is an example of cascade energy transformation, where low-quality secondary physical heat is brought into the form of a high-quality energy resource — useful components of hydrogen through a series of successive physical and chemical transformations that create a micro-macrosystem. The main functional purpose of which is to be used as a "green" reducing agent in the processes of direct reduction of iron (H_2 -DRI), with the ability to accumulate hydrogen if necessary.

In real conditions, the efficiency of electrolysis is approximately 50-60%. This means that only part of the consumed electricity is converted into a useful chemical component of its potential, the other part is lost in the form of physical heat. Therefore, it is advisable to use the "free" physical, residual heat as a source of secondary energy, which will reduce electricity consumption for the production of 1 kg of H_2 , bringing closer to the implementation of the idea of making this

cycle closed and energetically self-sufficient. And a more realistic direction of improving the energy efficiency of metallurgical production can be the deepest possible thermal integration of high-temperature electrolysis with electricity from TEGs, which will use the thermal energy lost during the implementation of metallurgical processes, with further optimization of the share of H_2 between recovery, which is the highest priority, and incineration as an additional source of the thermal process of the corresponding process/production.

Regarding the prospects for the use of high-temperature electrolysis. There are many combinations of performance, efficiency, service life and cost indicators, which, according to [6], allow you to achieve the main goal of hydrogen production at a low cost of \$ 2 per 1 kg of H_2 by 2026 and \$ 1 per 1 kg of H_2 by 2031. The combinations of objectives given by the authors were developed with the participation of industry experts and national laboratories; They can be considered a reference point for technology developers.

Thus, the idea of a closed power supply system must be determined to be useful in terms of integrating the initial properties of the elements. The result of their transformation is the emergence of optimal schemes for the distribution of the components of the energy of the system. This will reduce electricity consumption for hydrogen production, but not as an electrically self-sufficient closed loop. Therefore, the application in combination with metallurgical processes/aggregates, where there is a significant potential for generating residual physical heat of gases and slags, is limited.

Conclusions. The idea of "closing" the regeneration cycle due to the production of thermoelectricity on hot cases of metallurgical equipment, considered and analyzed for the reality of introduction, is quite logical as the first assumption. But if we take into account the potential of their physical heat as a source of electricity and the technical capabilities of TEGs (thermoelectric generators), it turns out that the electrical energy they are able to generate will not be enough to make the cycle closed and self-sufficient in terms of the potential of the energy used and restored again in the reverse way. This requires extremely large heat flows and areas, but the cycle of "electrolysis → H_2 → back to electricity" will always be in the red, due to the significant electricity costs for electrolysis, which requires additional use of electricity from external sources. Each repeated cycle will add losses due to incomplete conversion, losses on heat transfer and power supply of auxiliary equipment and compression, hydrogen purification.

It is advisable to use the results of the study in solving similar problems in the creation of regeneration schemes based on the combination of secondary sources of physical heat with the possibilities of obtaining electrical energy from it - the integration of solid oxygen hydrogen electrolyzers into the infrastructure of steelmaking.

Перелік посилань

1. G. Luzhanska, M. Galatsan, M. Serheiev, S. Gryshchenko, P. Kandieiev. Research of heat generation and consumption modes in combined heat supply systems using alternative energy sources // Proceedings of Odessa Polytechnic University, Issue 1(65), 2022. – P. 40–49. Режим доступу: DOI: <https://doi.org/10.15276/opus.1.69.2024.05> <https://pratsi.op.edu.ua/index.php/pratsi/article/view/445/444>.
2. Відновлювані джерела енергії: видання друге, доповнене / За заг. ред. С. О. Кудрі. Київ: Інститут відновлюваної енергетики НАНУ, 2024. 492 с. – Режим доступу: <https://www.ive.org.ua/wp-content/uploads/monograph2024.pdf>.
3. What is the Industrial Internet of Things (IIOT) and What are its Benefits? Reut Akuny, Head of R&D | 21 August, 2023. – Режим доступу: https://www.coretigo.com/what-is-the-industrial-internet-of-things-iiot-and-what-are-its-benefits/?utm_source=chatgpt.com.
4. Маляренко В. А. Аналіз споживання паливно-енергетичних ресурсів України та їх раціонального використання / В. А. Маляренко, І. Є. Щербак // Вісник Національного технічного університету «Харківський політехнічний інститут». – Харків : НТУ «ХПІ», 2013. – Вип. 14. – С. 118–126. 378.
5. Felix M Barker, D Max Snodderly, Elizabeth J Johnson et. el. Neuringer Nutritional Manipulation of Primate Retinas, V: Effects of Lutein, Zeaxanthin, and n-3 Fatty Acids on Retinal Sensitivity to Blue-Light-Induced Damage. *Invest Ophthalmol Vis Sci*. 2011 Jun 2;52(7):3934–3942. doi: 10.1167/iovs.10-5898. – Режим доступу: https://pmc.ncbi.nlm.nih.gov/articles/PMC3175953/?utm_source=chatgpt.com.
6. Hydrogen and Fuel Cell Technologies Office. Technical Targets for High Temperature Electrolysis. – Режим доступу: https://www.energy.gov/eere/fuelcells/technical-targets-high-temperature-electrolysis?utm_source=chatgpt.com.
7. Next Level Solid Oxide Electrolysis Upscaling potential and techno-economical evaluation for 3 industrial use cases. – Режим доступу: https://ispt.eu/media/20230508-FINAL-SOE-public-report-ISPT.pdf?utm_source=chatgpt.com.
8. Kuan-Ting Lee, Wei-Hsin Chen, Yu-Li Lin et. el. An overview of commercialization and marketization of thermoelectric generators for low-temperature waste heat recovery. *iScienc*. Vol. 26, Issue 10, 20 October 2023, 107874. – Режим доступу: <https://doi.org/10.1016/j.isci.2023.107874>. https://www.sciencedirect.com/science/article/pii/S258900422301951X?utm_source=chatgpt.com.
9. Карп І.М. Паливо та енергетика. ISSN 2413-7723. Енерготехнології та ресурсозбереження. 2020, № 2. С. 4 – 14. DOI: 10.33070/etars.2.2020.01. https://www.researchgate.net/publication/342400789_HYDROGEN_PROPERTIES_PRODUCTION_AND_USES/fulltext/63b85a2cc3c99660ebd43083/HYDROGEN-PROPERTIES-PRODUCTION-AND-USES.pdf.

References

1. Luzhanska, G., Galatsan, M., Serheiev, M., Gryshchenko, S., & Kandieiev, P. (2022). Research of heat generation and consumption modes in combined heat supply systems using alternative energy sources. *Proceedings of Odessa Polytechnic University*, 1(65), 40–49. <https://doi.org/10.15276/opus.1.69.2024.05>.
2. Kudrya, S. O. (Eds.). (2024). *Vidnovliuvani dzhhereli enerhii: vydannia druhe, dopovnene*. Instytut vidnovliuva-noi enerhetyky NANU. <https://www.ive.org.ua/wp-content/uploads/monograph2024.pdf>.
3. What is the Industrial Internet of Things (IIOT) and What are its Benefits? Reut Akuny, Head of R&D | 21 August, 2023. https://www.coretigo.com/what-is-the-industrial-internet-of-things-iiot-and-what-are-its-benefits/?utm_source=chatgpt.com.
4. Maliarenko, V. A. (2013). Analiz spozhyvannia palyvno-enerhetychnykh resursiv Ukrayni ta yikh ratsionalnoho vkorystannia. *Vidnyk Natsionalnoho tekhnichnogo universytetu "Kharkivskyi politekhnichnyi in-stytut"*, 14, 118-126.
5. Barker, F., Snodderly, M., & Johnson, E., et. al. (2011). Neuringer Nutritional Manipulation of Primate Retinas. Effects of Lutein, Zeaxanthin, and n-3 Fatty Acids on Retinal Sensitivity to Blue-Light-Induced Damage. *Ophthalmol Vis Sci*, 52(7), 3934-3942. <https://doi.org/10.1167/iovs.10-5898>.
6. Hydrogen and Fuel Cell Technologies Office. Technical Targets for High Temperature Electrolysis. https://www.energy.gov/eere/fuelcells/technical-targets-high-temperature-electrolysis?utm_source=chatgpt.com.
7. Next Level Solid Oxide Electrolysis Upscaling potential and techno-economical evaluation for 3 industrial use cases. https://ispt.eu/media/20230508-FINAL-SOE-public-report-ISPT.pdf?utm_source=chatgpt.com.
8. Lee, K-T., Chen, W-H., & Lin Y-L., et. el. (2023). An overview of commercialization and marketization of thermoelectric generators for low-temperature waste heat recovery. *iScienc*, 26(10), 107874. <https://doi.org/10.1016/j.isci.2023.107874>.
9. Karp, I. M. (2020). Palyvo ta enerhetyka. *Enerhotehnolohii ta resursozberezhennia*, 2, 4-14. <https://doi.org/10.33070/etars.2.2020.01>.

Надіслано до редакції / Received: 18.07.2025
Прийнято до друку / Accepted: 08.12.2025

Kriachko H.Yu., Siharov Ye.M.

Change in coke characteristics in a low-movement coke bed of blast furnaces

Dniprovsky State Technical University, Kamianske, Ukraine

Kрячко Г.Ю., Сігарьов Є.М.

Зміна характеристик коксу в коксовому шарі з низьким рівнем руху доменних печей

Дніпровський державний технічний університет, м. Кам'янське, Україна

Abstract. The question of the appropriateness of using the archaic term "tooterman" in relation to the relatively immobile coke mass in the lower part of blast furnaces was raised. For the first time, an attempt was made to summarize information about changes in coke characteristics depending on its location in local MCM zones, for which a conditional division of the MCM into three interdependent but functionally different parts: the upper central superheater (feeding), the middle part between the air blast and cast iron nozzles (working), and the lower part located in the sump (MKM working zone). The conditions for the use of coke in local parts of the MCM were comprehensively considered. New data about the increase in melting intensity on the size of the living part of the MCM has been extracted. It has been shown that the very changes in the intensity of smelting are done to ensure the life of the tuyere part by heating with coke. It is shown by comparing the structure of the MCM of two Japanese blast furnaces cooled during operation that working at a reduced smelting intensity leads to the degeneration of the stable axial zone of low-mobility materials above the tuyere horizon, thereby changing the conditions for preliminary coke heating and its supply to the lower parts of the MCM. The known mechanism of coke piece destruction by liquid metal flowing past them with carbonization of the latter needs to be clarified, since liquid slag formed on the tuyeres during oxidation of Fe, Si, Mn, and P components of cast iron also moves through the sub-tuyere coke mass. The restoration of these oxides requires additional consumption of coke carbon. Based on the generalization of research data and theoretical principles of the blast furnace process, the sequence of coke combustion processes in the MCM sub-bed array is proposed. The mechanism of erosive influx onto the coke massif, which is located in the zone of intense molten flow, has been clarified. It is shown that in this array, there is not one process of coke consumption for metallurgical reactions, as previously thought, but three. The influence of MCM "survivability" on the technical and economic indicators of smelting has been assessed.

Keywords: blast furnace process, tooterman, sump, coke mass, smelting intensity, coke, erosion, graphitization, structure.

Анотація. Було порушене питання про доцільність використання архайчного терміна «перегрівач коксу» стосовно відносно нерухомої коксової маси в нижній частині доменних печей. Вперше було зроблено спробу узагальнити інформацію про зміни характеристик коксу залежно від його розташування в локальних зонах ГКМ, для чого було проведено умовний поділ ГКМ на три взаємозалежні, але функціонально різні частини: верхній центральний перегрівач (живильний), середня частина між повітряним дуттям та чавунними соплами (робоча) та нижня частина, розташована в зумпфі (робоча зона ГКМ). Комплексно розглянуто умови використання коксу в локальних частинах ГКМ. Отримано нові дані про збільшення інтенсивності плавлення від розмірів живої частини ГКМ. Показано, що самі зміни інтенсивності плавлення здійснюються для забезпечення терміну служби фурмової частини шляхом нагрівання коксом. Порівнянням структури МВМ двох японських доменних печей, охолоджуваних під час експлуатації, показано, що робота зі зниженою інтенсивністю плавки призводить до дегенерації стабільної осьової зони малорухливих матеріалів над фурменним горизонтом, тим самим змінюючи умови попереднього нагрівання коксу та його подачі до нижніх частин МВМ. Відомий механізм руйнування шматків коксу рідким металом, що протікає поза них, з карбонізацією останнього потребує уточнення, оскільки рідкий шлак, що утворюється на формах під час окислення Fe, Si, Mn та P компонентів чавуну, також рухається через підфурмену коксовою масу. Відновлення цих оксидів вимагає додаткової витрати коксового вугілля. На основі узагальнення дослідницьких даних та теоретичних основ доменного процесу запропоновано послідовність процесів горіння коксу в масіві підшару МВМ. З'ясовано механізм ерозійного напливу на коксовий масив, який розташований у зоні інтенсивного розплавленого потоку. Показано, що в цьому масіві існує не один процес споживання коксу на металургійні реакції, як вважалося раніше, а три. Оцінено вплив «живучості» МСМ на техніко-економічні показники плавки.

Ключові слова: домennий процес, тотерман, відстійник, коксова маса, інтенсивність плавки, кокс, ерозія, графітізація, структура.

Introduction. In multi-ton ferrous metallurgy, coke is essentially an indispensable component of blast furnace charge. And while its functions as a heat carrier and source of carbon monoxide reducing agent

can be partially replaced by blowing in hydrocarbons, its physical functions cannot be replaced due to the thermal stability of the lump. The ability of coke to retain its lumpiness close to the blast furnace hearth

allows the creation of a movable frame of materials and ensures the flow of reduction, melting, and accumulation processes at different temperature levels.

Particularly difficult operating conditions for coke occur in the lower high-temperature zone of the blast furnace, where only one coke remains in a solid state during normal furnace operation. Depending on the specifics of the mechanical processes, this zone is divided into three parts. The upper zone between the cohesion zone at the top and the conical part of the axial zone of low-mobility materials (OZMM – term by V.G. Druzhkov, 1982) on the side and the furnace hearths at the bottom was named the active coke zone by E. Bepler and colleagues [1] (Fig. 1). V.P. Puzanov and V.A. Kobelev (2012) gave this complex spatial figure another name: "counterflow coke nozzle." The second part includes a very specific zone of furnace

hearths, and the third part includes a coke toberman extending from the OZMM down to the tongs [1].

The immobile coke mass under the mobile zone, submerged in molten slag and cast iron, is commonly referred to as a coke deadman [1-3], which is not entirely correct in terms of the use of this term. The term "deadman" came from the practice of operating blast furnaces, when, as a result of certain technological violations, a "dead" monolith of solidified melts and coke formed on the hearth. Under normal conditions of the blast furnace process, the coke mass located under the active coke zone is a gas-permeable formation, as evidenced by the powerful emission of blast furnace gases when blowing out the cast iron tap at the end of the smelting process, drainage capacity, and limited mobility relative to the hearth or the horizon of the air blast pipes.

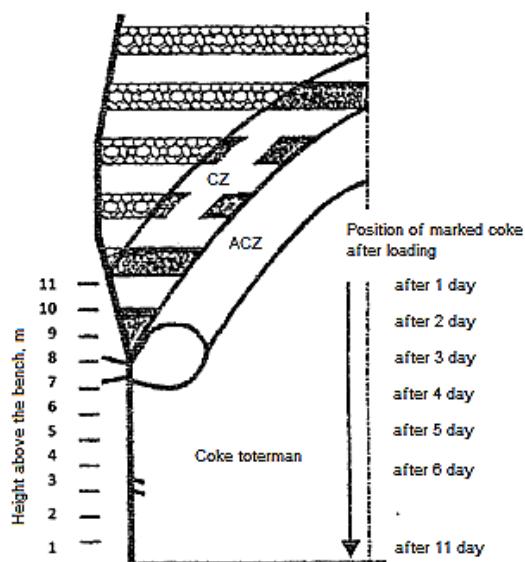


Fig. 1. Diagram of coke movement in blast furnace No. 1 at the Schwelgen plant and names of characteristic zones in its lower part E. Bepler et. al [1]: CZ – cohesion zone; ACZ – active coke zone

Therefore, when considering issues related to the operation of the lower part of blast furnaces, it is proposed to replace the terms "toberman" and "coke toberman," which do not correspond to the essence of the processes occurring in the aforementioned part, with the terms "low-mobility coke mass" (LCA) and "low-mobility coke charge" (LMC), or even "low-mobility coke frame." Given the difference in the processes occurring at different heights of the low-mobility coke mass, we believe it is advisable to divide it into characteristic zones from top to bottom: the upper superheater (OZMM), the middle sub-furnace between the horizons of the furnaces and cast iron nozzles, and the lower sub-nozzle located in the sump. This division makes it possible to consider the functional purpose of each part more specifically and, with the help of the results of modern research, to consider the behavior of coke in the MCM structure from new perspectives. This is prompted by fundamental changes in the profiling of blast furnaces,

which have led to an increase in both the height of the furnace and the depth of the sump [4], which has significantly affected the operational characteristics of coke within the specified profile elements.

Analysis of recent studies and publications.

The beginning of active research into the condition of coke along the height of the charge column is associated with the dismantling of blast furnaces that were frozen in operation [5]. Analysis of the contents of three Japanese blast furnaces showed that, regardless of the quality of the coke used and the technology used to conduct the process, the size of the coke decreased during the process of lowering it from the tuyere into the hearth, and the smaller the initial size of the coke, the greater the decrease.

The second pattern identified was a sharp thinning of the coke structural grid due to increased pore formation in the low-mobility coke mass below the air blast horizon. Subsequently, with the advent of sophisticated research tools, a number of studies [6-9]

appeared that more thoroughly illuminated the behavior of coke in specific areas of its use.

In cores taken from the air blast horizon, the characteristics of coke that determine its metallurgical value were studied, both in the blast zone and in the upper part of the MCM [6, 7]. These are the strength of coke at different levels of smelting intensification [7], the distribution of fine fractions along the furnace radius, and the ability of coke to resist aggressive factors such as gasification, alkali content, etc. [6].

Modern methods for studying the microstructure of the phase and elemental composition of coke samples taken from the MCM between the tuyere and nozzle horizons were used in the study [8]. These are X-ray diffraction (XRD analysis), energy dispersive X-ray spectroscopy (EDS analysis), and electron microscopy.

The authors [9] used X-ray structural analysis to evaluate the degree of graphitization of coke collected from the blast furnace sump, which allowed them to determine the average carbon stacking height (L_c), the interlayer distance d_{002} , and the number of neps $n_H = L_c/d_{002}$. The use of a scanning electron microscope and spectroscopy made it possible to study the interface between coke and cast iron and to determine the phases in the coke pores, both captured and newly formed.

Given the importance of the topic, the results of individual studies will be reviewed, analyzed, and, where possible, supplemented.

The purpose of the work to determine the functional purpose of the components of the low-mobility coke mass of blast furnaces using the results of leading studies and, from this perspective, to examine the behavior of coke in specific locations.

Research results and discussion. In accordance with the division of the low-mobility coke mass into three characteristic parts, the main material of the article is also divided into corresponding blocks.

The superstructure central part of the MCM. The superstructure part is a kind of channel for supplying coke to its superstructure immovable array, on the condition of which the operation of the blast furnace will largely depend. In turn, the satisfactory performance of the feeding function of this part depends on the organization of the coke vent in the center of the furnace and the maximum possible preservation of the properties of coke at the entrance to the MCM. Experience has shown that, in principle, blast furnaces can operate with any form of cohesion zone and differences in the method of feeding the MCM from above. However, with a purely peripheral furnace stroke and feeding of the sub-furnace working coke mass with degeneration of the central one, only small-volume furnaces could operate. There are known cases of operation of such furnaces, in particular, DP No. 1 of the Yenakiieve Metallurgical Plant with a V-shaped cohesion zone and the absence of an over-furnace cone-shaped part of the MCM (I.D. Balon et al., 1984).

The main reason for the possibility of smelting with

a degenerate super-furnace part of the MKM was the small radius of the furnace, half of which was the length of the furnace hearth. Due to this design difference in small furnaces, coke was heated to the required temperatures not above the furnaces, but at their horizon. Powerful furnaces have a significant difference between the length of the furnace radius and the length of the tuyere hearth, so without preheating the coke above the tuyeres, normal furnace operation is impossible.

To analyze the behavior of coke in the feeding part of the coke oven battery, the results of studies on blast furnaces No. 3 and No. 4 of Chine Steel (Taiwan) were used, where coke samples were taken at the level of air tuyeres using samplers with a diameter of 200 and 300 mm. During the experiments, the strength of the selected coke samples was determined using a drum used to measure CSR [7].

In the further analysis, we divided the furnace radius, along which the samples were taken, into two parts: the first part, from the air blast pipes to the 2 m mark, represented the blast pipe cavity together with the "bird's nest" of fines, the second – between the 2 and 4 m marks in the direction of the center of the furnace – the axial zone of the low-mobility super-tundish array.

Researchers [7] found a significant difference in the nature of changes in coke strength along the radius of the furnace depending on the injection of pulverized coal fuel (PCF) and its absence on the coke bed. In the case of PFP injection, curves with minimum strength in the furnace zone and maximum strength shifted to the center of the furnace were observed (Fig. 2, a, Fig. 2, b). The researchers explained the appearance of maximum strength values by the blowing of the surface of coke pieces with a blast jet, a weakened gasification reaction, and physical abrasion, as a result of which the latter showed a higher drum test. In turn, the practically unchanged strength of coke without coal injection over a distance of 4 m was explained by the high degree of coke replacement in the tuyeres.

The latter argument can be partially agreed with by comparing the graphs in Fig. 2, a and Fig. 2, d. Indeed, coke samples using coal-free technology lost SiO_2 much more slowly than those using coal.

However, the decisive difference in the nature of changes in coke strength lies elsewhere – in the temperature and thermal regime of the furnace and in the structure of the low-mobility coke masses in it, which is determined not only by the injection of fuel additives or their absence. To illustrate this argument, Fig. 3 shows the structures of the charge column frozen in operation in Japanese blast furnaces No. 1 at the Amagasaki plant [10] and No. 1 at the Hirohata plant [11] (Fig. 3).

The performance indicators of these furnaces and the volumes of slow-moving coke mass elements determined by us [12] are presented in Table 1. Since Japan used high-quality imported blast furnace raw materials at that time, coke and iron ore materials in both furnaces were of similar quality. The main

difference in the blast furnace process strategy was the choice of priority. At DP No. 1 Amagasaki, maintaining a high ore load and moderate smelting intensity resulted in high smelting efficiency, with a specific fuel consumption of only 451 kg/t of pig iron.

Table 1 - Performance indicators for frozen blast furnaces and quantitative characteristics of their low-mobility coke beds according to data from [10-12]

Indicators	Plant, furnace number	
	Amagasaki, No. 1	Hirohata, No. 1
Diameter of the horn, m	6	7,8
Useful volume, m ³	721	1407
Specific productivity, t/m ² ·day	48,8	53,2
Fuel consumption (coke + fuel oil), kg/t	451	542
Ore load on coke	3,57	3,12
Melting intensity per fuel used I_f , t/m ³ ·day	0,854	0,979
Volume of coke mass, m ³ /% of useful furnace volume in profile elements:		
- horn	100 / 13,9	235 / 16,7
- shoulders	40 / 5,5	133 / 9,5
- steaming	-	133 / 9,5
- mine	-	23 / 1,6
Total coke mass volume, m ³ /% V_{cor}	140 / 19,4	391 / 27,8

An analysis of the information presented in **Fig. 3** allows us to draw certain conclusions about the effect of smelting intensity on the formation of the charge column. As the intensity increases, the following changes occur:

1) the height of the overburden part of the low-mobility coke mass increases;

High smelting efficiency (53.2 t/m²/day) at DP No. 1 Hirohata was achieved by increasing the smelting intensity, but with a significantly higher specific fuel consumption (542 kg/t of pig iron).

2) the total volume of the coke mass increases;

3) the number of windows in the plastic zone increases and, accordingly, the gas permeability of the critical zone increases;

4) the circumferential unevenness in the formation of cohesion zones and the immobile coke mass increases or is eliminated.

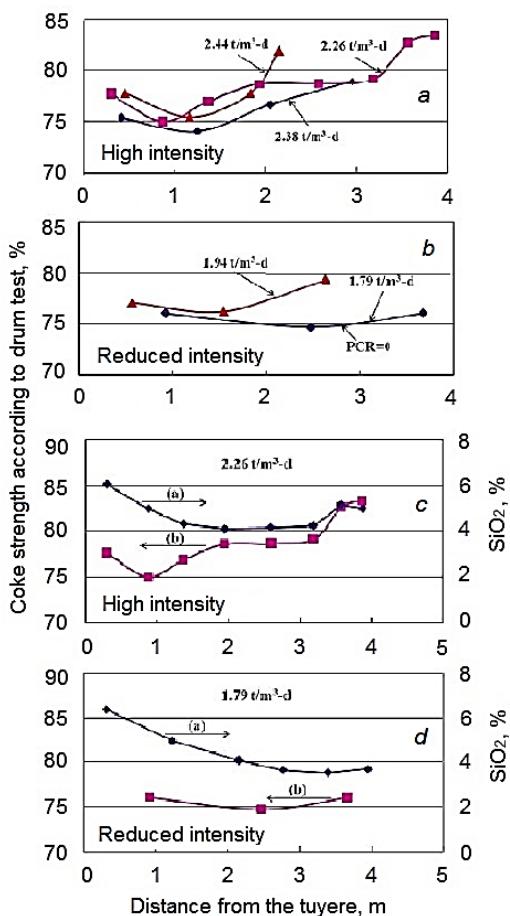


Fig. 2. Change in coke strength along the radius of the furnace DP No. 3 and 4 of the CSC company (Taiwan) depending on high (a, c) and low (b, d) melting intensity per specific productivity, as well as on the SiO₂ content in coke samples according to data [7]: PCR = 0 means cessation of pulverized coal fuel injection

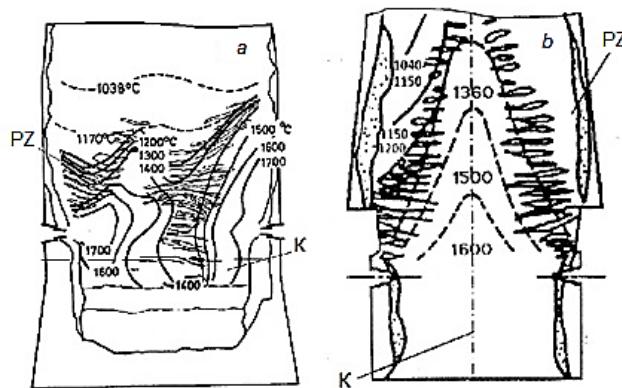


Fig. 3. Forms of the plastic zone and low-mobility coke mass in the frozen blast furnaces Amagasaki, No. 1 (a) and Hirohata, No. 1 (b) according to data [10, 11]: numbers next to curves – isotherms; K – coke mass; PZ – plastic zone

Reducing the intensity of the furnace operation leads to reverse processes.

To sum up, it should be noted that reduced melting intensity leads to the degeneration of the stable axial zone of low-mobility coke above the tuyere horizon, which worsens the conditions for its heating and hinders the formation of the lower parts of the MCM with sufficient temperature, gas permeability, and drainage capacity, as convincingly demonstrated by the structure of the coke mass of DP No. 1 Amagasaki (Fig. 3, a).

Table 2 - Output of coke fines depending on furnace productivity and theoretical combustion temperature recorded one day prior to coke sampling at CSC's DP No. 3 and 4 [7]

Indicators	High performance				Reduced productivity	
Furnace number / period	4/1	3/1	4/2	3/3	4/3	3/5
Productivity, t/m ³ .day	2,44	2,38	2,45	2,26	1,93	1,94
Small change output, %	12,1	19,2	13,1	20,7	6,8	6,1
Theoretical combustion temperature, °C	2100	2283	2141	2197	2049	2055

The middle part of the MCM between the levels of the tuyeres and cast iron nozzles. This is the most critical area of the slow-moving coke mass, as it is here that the final cast iron and slag compositions are formed, and the melts are separated and accumulated. Hence its functional purpose is to create the necessary conditions for these processes to take place.

An idea of the state of coke after staying in the tuyere hearth compared to its initial state and coke that was in the coke nozzle at the core sampling horizon located 1.0-5.2 m below the level of the air tuyere (Fig. 4, a) can be obtained using the results of work [8].

The experimental coke samples were obtained in a 5,800 m³ blast furnace manufactured by Shagang Group (China). The furnace, with a hearth diameter of 15 m, had 40 air blast pipes, 3 cast iron troughs, and hearth depths below the air blast pipe and sump horizons of 5.2 and 4.4 m, respectively. The quality coke had M40 90% and M10 5.7% indicators. Coke and pulverized coal fuel consumption was 380 kg/t and

While intensive furnace operation with coal dust injection helped preserve the properties of coke in its low-mobility mass (Fig. 2, a, b), such operation in the tuyere zone intensified coke destruction and increased the yield of fines (Table 2), which is understandable, since it is known that high temperatures destroy the carbon texture through graphitization by the catalytic effect of fine iron fractions [6]. The destruction effect is enhanced by the high temperature in the combustion zone, which is achieved by enriching the blast with oxygen.

152 kg/t of cast iron, respectively. The furnace's productivity (October 2009) was 12,500 t/day.

It was found that the largest pieces of coke suffered the most damage in the furnace hearth and in a 2 m long section. The underfurnace coke (Fig. 5, a) had a characteristic "cut" shape, significantly different from both the coke of the low-mobility mass (Fig. 5, b) and the initial coke.

Given the nature of coke piece destruction, the authors [8] proposed a mechanism for reducing the size of pieces under the tuyere hearth due to the downward movement of liquid metal (Fig. 5, b) and the process of its carbonization. In our opinion, this mechanism does not sufficiently explain the loss of coke mass under the tuyere zone, since, in addition to liquid metal, liquid slag formed on the tuyeres during the oxidation of Fe, Si, Mn, and P components of cast iron also passes through the coke under the tuyere. The carbonization of metal oxidized on the tuyeres and the reduction of the listed impurities require corresponding consumption of coke carbon.

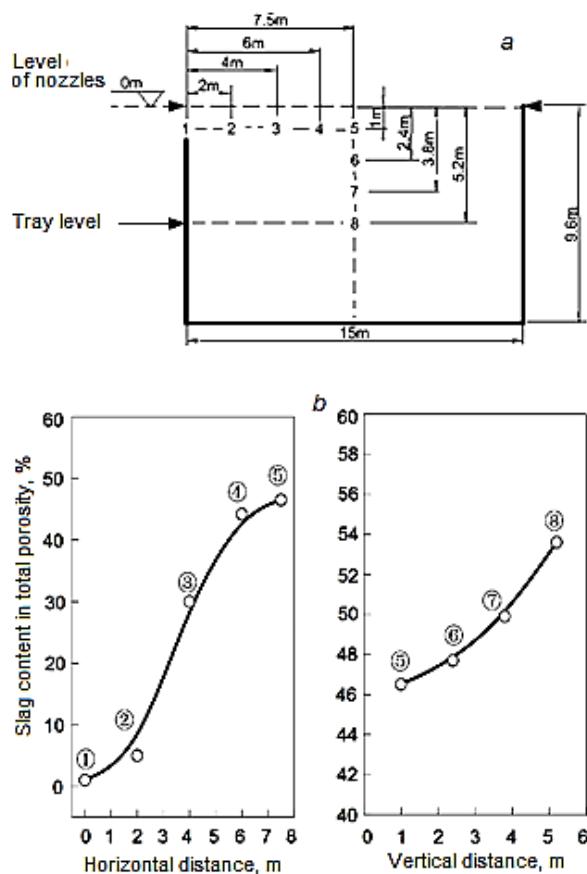


Fig. 4. Locations for sampling coke from a 5800 m³ blast furnace (a) and slagging of coke samples depending on location (b) according to data [8]: 1-8 – locations according to Fig. 4, a

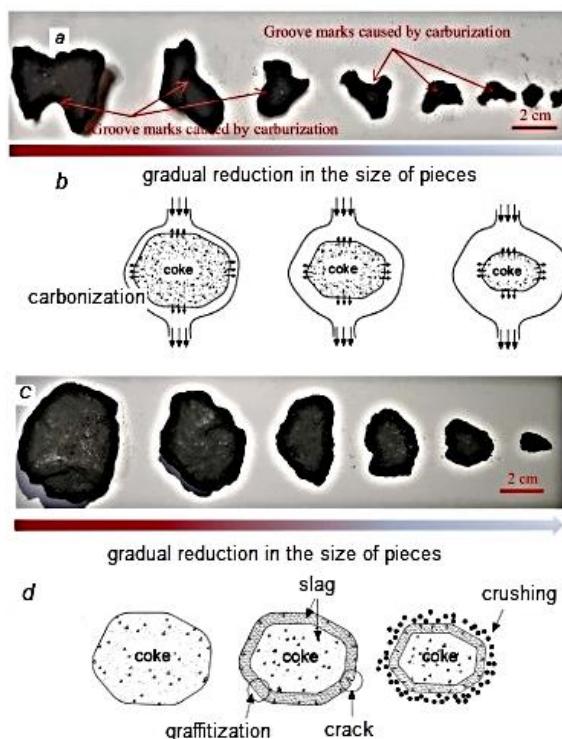


Fig. 5. Mechanisms for grinding peripheral (a, b) and central coke (c, d) below the air blast horizon proposed by the authors [8]

When studying the microstructure of coke samples, slag was found inside coke pieces taken at a distance of 2 meters from the center of the furnace. According to the data obtained, the amount of slag contained in the coke samples varied – it was minimal under the combustion zone and maximal in the center of the furnace (**Fig. 4, b**). The graph shows that the coke contained < 10% slag in the pores at a distance of 0 and 2 m from the edge of the furnace and more than 30% slag at distances of 4.6 and 7.5 m from the furnace walls.

The authors [8] explain the observed dependence by the time the coke remains in the furnace cross-section. At the periphery of the furnace in the charging zone, coke is consumed and moves down faster than coke in the coke bed. Therefore, a small part of the slag falls on the surface of the coke pieces. In addition, due to active gasification and carbonization, the coke surface saturated with slag is consumed more actively. The central coke moves down slowly, which gives enough time for the slag to penetrate deeper into it. Combined with the low amount of metal in the center of the furnace, the coke is almost not washed away and is not absorbed by the liquid metal.

There are no serious comments regarding the mechanism of "slag" crushing of coke pieces removed from the furnace hearths, but the somewhat simplified diagram (**Fig. 5, d**) does not quite correspond to the appearance of the coke samples (**Fig. 5, c**).

The lower part of the low-mobility coke mass. Functionally, this is the zone of gradual MCM depletion. The task of technologists is to maintain the buoyancy of the mass without losing its drainage capacity. The materials of the study of the state of coke in this part of a 4350 m³ blast furnace in China deserve the attention of the professional community, but the author's interpretation [12] of the results obtained cannot be agreed with without critical comments.

The study was conducted in August 2020 [9]. The furnace had 38 air nozzles and 4 cast iron tuyeres. Before it was shut down for repairs in June 2020, the furnace had been operating since October 2006 with a productivity of 2.14 t/m³·day and a slag yield of 242 kg/t of cast iron. Coke and pulverized coal consumption amounted to 330 and 180 kg/t of cast iron, respectively.

According to the authors [9], at the time of the shutdown for repairs, the diameter of the burning furnace was 15.17 m, and the diameter of the coke nozzle was 11.95 m, or 78.77% of the actual diameter of the furnace. The coke samples studied were obtained by drilling cores from the coke mass during major repairs. The sampling locations were located at a distance of 1.2, 1.8, 2.4, and 3.0 m from the horizon of the cast iron nozzles in the direction of the tongs (**Fig. 6**). The diameter of the cores was 100 mm. The researchers emphasize the buoyancy of the coke mass and the fact that the area below location S4 to

the clamp was free of coke.

It is clear that diagrams always have some degree of conventionality, but the one shown in **Fig. 6, a** differs significantly from the actual state of the low-mobility mass in the blast furnace sump, for example, blast furnace No. 4 in Kurashiki (Japan, T. Nohashi et al., 2004). This is especially true for the upside-down conicity of the coke mass in the direction of the cast iron tuyere of the Chinese blast furnace.

Fig. 6, a-d shows the cross-section of samples at the sampling horizons, and **Fig. 6, e-h** shows images of samples after digital processing, which was used to calculate the average porosity and size of coke pieces in the coke mass (**Fig. 7**). Unlike the author's [9] interpretation of the research results, the abscissa axis in **Fig. 7** shows not the numbers of sampling locations S1-S4, but the actual distance from the axis of the cast iron trough. This allows us to see the gradients of change in coke properties as it descends toward the bottom without even performing calculations. As shown in the last figure from the location 1.2 m below the cast iron trough, the coke void increased with a slight decrease in location S4. In contrast to the porosity, the size of the pieces in locations S1-S4 continuously decreased over a distance of 1.8 m, with the rate of decrease in piece size gradually slowing down. At the same time, it is not difficult to see the contradiction in the opposite changes in the average size of coke pieces in the sump and its voids filled with cast iron. It would be worth explaining why the pieces are getting smaller and the voids between them are increasing.

The low porosity of the coke mass layer, located 1.2 m away from the cast iron tuyere in the direction of the clamp (**Fig. 6, c**), can be explained by the significant difference in the sizes of large and small fractions, as well as the action of Archimedes' buoyancy force, which together contributed to the significant packing of pieces in the molten cast iron. The unexpectedly high void volume in the layers of the nozzle at horizons S2-S4 within the range of 44-47% is noteworthy. If we assume the initial void content of skip coke to be 50%, then the void content of the coke charge in the sump at levels S2-S4 will be 88-94% relative.

The authors [9] considered the chemical composition of coke samples (**Table 3**) to be almost identical, with the exception of the CaS content in core S2, since all samples contained K, Na, and Zn. A more careful analysis of the data in the table does not allow us to agree with this conclusion of the researchers. First, there is a clear decrease in the concentration of alkalis in the coke samples from top to bottom, which can be explained by a decrease in the temperature of cast iron and MCM with distance from the heat generation horizon on the air nozzles and the consumption of alkalis for interaction with transitional slag in the pores of coke.

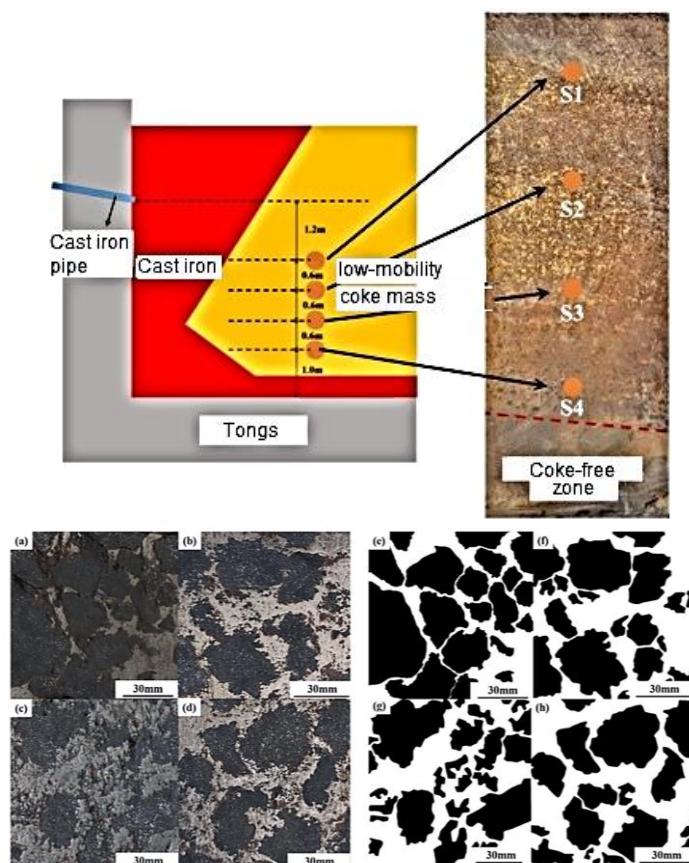


Fig. 6. Diagram of the structure of a low-mobility coke mass in the sump of a Chinese blast furnace with a volume of 4350 m^3 with an index of locations (S1–S4) for coke sampling (a) and binary images of coke samples (a–d) with the morphology of these samples corresponding to locations S1–S4 (e–h) according to [9]

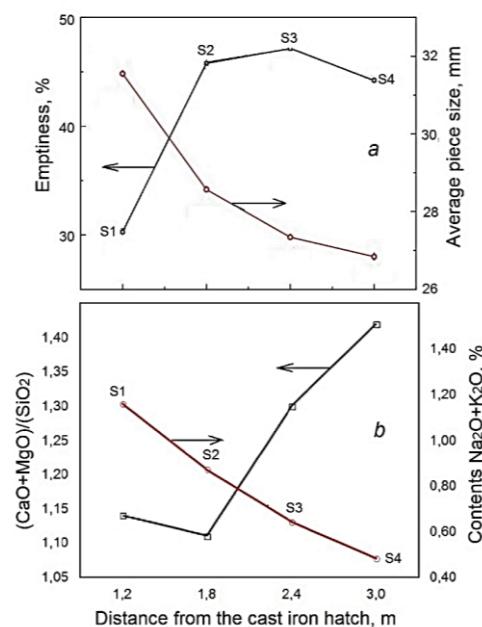


Fig. 7. Graphs showing changes in the average size of coke pieces and coke porosity (a), as well as the alkali content and basicity of the mineral mass of coke (b) in the sump of a Chinese blast furnace with a volume of 4350 m^3 , constructed based on data from [9]

Table 3 - Chemical composition of coke samples taken from the nozzle below the level of cast iron taps according to [9]

Location of sample	Contents, %					
	C	Al ₂ O ₃	SiO ₂	MgO	CaO	CaS
S1	50.88	6.98	17.99	2.59	17.98	2.36
S2	37.22	9.53	18.79	2.81	18.12	12.61
S3	50.14	8.10	15.83	2.81	17.79	4.67
S4	36.05	10.60	19.71	3.76	24.26	5.11

Continuation of Table 3

Location of sample	Contents, %					
	K ₂ O	Na ₂ O	K ₂ O+Na ₂ O	ZnO	CaO/SiO ₂	CaO + MgO SiO ₂
S1	0.82	0.34	1.16	0.06	1.00	1.14
S2	0.58	0.29	0.87	0.05	0.96	1.11
S3	0.44	0.20	0.64	0.02	1.12	1.30
S4	0.25	0.23	0.48	0.03	1.23	1.42

The first factor that slowed down the reduction in coke pieces was a gradual decrease in the alkali content in coke samples from 1.16% to 0.48%, i.e., by 2.4 times. The second factor was the active adhesion of CaS to the surface of coke due to the desulfurization reaction of CaO metal in blast furnace slag, which is captured by coke when it is above the cast iron tuyere. Due to the action of the above factors, the reduction in the average size of the coke piece and its porosity at a distance of 1.8-3.0 m below the coke nozzle was only 6.1% and 3.4% (relative), respectively.

Given the process of absorption of blast furnace slag by coke pores, it became possible to evaluate the composition of coke together with transition slag in pores using known basicity indices. This leads to the second difference in the chemical composition of coke samples, which is a significant increase in basicity at horizons S3 and S4 compared to S1 and S2. This indicates that, despite the relatively low temperatures

in the sump at horizons S3 and S4, silicon was recovered from the transition slag, which reduced the silica content and increased the basicity. The possibility of silicon recovery in the sump of DP No. 1 of the Hirohata plant (Japan) with a volume of only 1407 m³ was noted in [13].

As shown in **Fig. 8**, the mineral layer at the interface between cast iron and coke was in direct contact. Due to the presence of coke pores (**Fig. 8, b**), coke continuously adsorbed blast furnace slag, which interacted with coke ash. After contact with molten cast iron, calcium in the newly formed slag reacts with cast iron sulfur: $\text{CaO} + \text{S}_4 + \text{C}_\text{K} = \text{CaS} + \text{CO}$. Since the melting point of CaS is about 2673 K, the authors [9] claim that the slag phase adheres to the interface between coke and molten iron as a highly viscous mineral. This conclusion was made based on the fact that minerals were present both at the interface and in the iron.

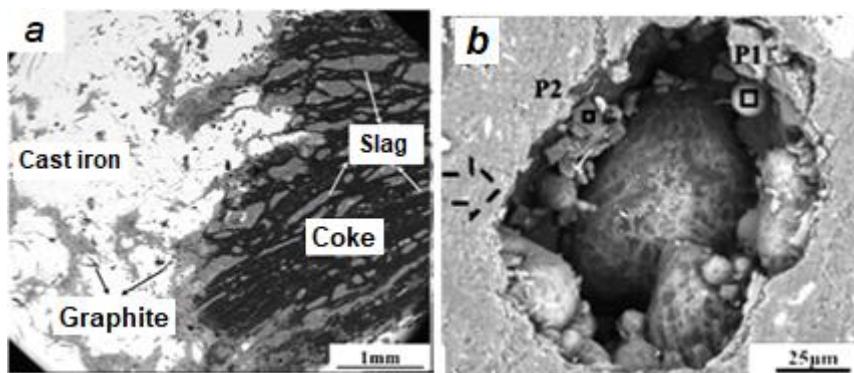


Fig. 8. Interface between coke and cast iron (a) and slag phase in coke pores (b) in micrographs of varying magnification, presented in [9]

Considering the use of coke carbon in the desulfurization and SiO₂ reduction reactions, it should be emphasized that the data presented here contradict the conclusions of [9], which states that coke consumption in the sump is only for metal carbonization. The pore content in the coke sample

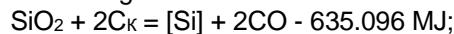
from location S1 is shown in **Fig. 8, b**. The pores contained perfectly spherical and massive phases containing potassium and represented by Ca₂Al₂SiO₇, and the massive phases were represented by the final slag of the blast furnace. Since the upper coke was closer to the cast iron tuyere and to the layer of blast

furnace slag containing alkalis, the alkaline elements were deposited in the pores of the coke of horizons S1 and S2. Due to this, the catalytic effect of alkalis on the coke graphitization process was manifested precisely at these horizons (Table 4). As the coke gradually descended into the hearth, the alkali content and their effect decreased, and the catalytic effect of iron in the

molten iron increased to a certain limit S3. The authors [9] suggest that at the S4 horizon, the heavily graphitized surface of the coke was washed away by the upper molten iron, and as a result of the temperature decrease near the hearth, the degree of coke graphitization decreased.


Table 4 - Structural parameters of coke samples from coke oven feedstock compared with coke from other furnace horizons according to [9]

Sample	Average carbon stacking height L_c , nm	Number of nefi, n_{ave}
S1	72.10	214
S2	79.96	238
S3	83.25	248
S4	53.13	158
skip coke	2.31	7
coke from the cohesive zone	4.59	13
coke from the furnace area	6.82	20


Based on the above, it is possible to present the processes occurring with the coke mass in the sump in the following sequence:

1) in locations S1 and S2, due to the preliminary capture of blast furnace slag and alkalis by coke pores at the horizon of cast iron troughs, the catalytic effect of alkalis on the formation of alkali-containing compounds and the formation of transitional slag with blast furnace dissolution of coke ash is enhanced.

2) in locations S2-S4, CaO of the transition slag at the coke-metal boundary desulfurizes the metal

3) in locations S3 and S4, SiO_2 is reduced from transition slag

4) in locations S3 and S4, the catalytic effect of Fe on coke graphitization is enhanced due to a decrease in coke piece size and an increase in MCM porosity, while the catalytic effect of alkalis is significantly weakened due to their consumption in locations S1 and S2;

5) washing away the graphite layer from coke pieces in location S4 enhances the catalytic effect of Fe on further coke graphitization on the one hand and cast iron carbonization on the other $3\text{Fe} + \text{C}_k = \text{Fe}_3\text{C}$.

The interaction of these processes ultimately leads to continuous graphitization and crushing of coke with complete depletion of the lower part of the low-mobility coke mass in the blast furnace sump. According to the presented sequence of processes, it is shown that there is not one process of coke consumption in the sump, as stated in [9], but three. To sum up, it should be noted that the factors determining the degree of coke graphitization below the horizon of cast iron troughs are the increased alkali content in the upper part of the sump, the catalytic effect of iron in the cast iron melt in its lower part, and the temperature distribution along the height of the under-trough space.

It should be noted separately that, despite all the positive aspects of labor-intensive and research methodology [9], the lack of data on the composition of cast iron of selected cores reduces the value of the data obtained.

Duration of operation of a low-mobility coke mass. During normal operation of a blast furnace, the process of feeding the MCM and consumption continues uninterrupted. However, thanks to the results of research [1], it is possible to roughly estimate the hidden impact of MCM changes on coke consumption and blast furnace productivity. According to [1], we assume that one "cycle" of MCM change (the time it takes for marked coke to get from loading to the clamp) is 11 days. There will be 32 such revolutions per year. We assume the volume of MCM for the blast furnace to be 5000 m^3 , which is 27.8% of the useful volume, by analogy with blast furnace No. 1 in Hirohata, calculated by us (see Table 4). Then the volume of MCM DP 5000 m^3 will be 1390 m^3 with a mass of 695 t. With 32 MCM changes per year, the total coke consumption will be 22,240 tons, from which, with a specific coke consumption of 380 kg/ton with coal dust injection, 58,526 tons of pig iron can be obtained.

With a daily production of 9,500 tons of pig iron, the annual output will be 3,372,500 tons, which will require 1,281,550 tons of coke. With these figures, the percentage of coke consumption for the gradual replacement of the MCM will be 1.74%. Given the accepted scale of production, this does not seem like very much, but the consumption of 22,400 tons of coke per year is not insignificant, considering today's realities. Therefore, work on a possible extension of the service life of the MCM makes sense, but research in this area is only just beginning, given its labor intensity and complexity.

Conclusions

(1) The question was raised about the appropriateness of using the archaic term "tooterman" in relation to the low-mobility coke mass (LMC) in the working space of the lower part of blast furnaces, without which the blast furnace process is impossible. The functional purposes of characteristic zones of the LMA and the correspondence of the characteristics (properties) of coke to the implementation of these functions were formulated.

(2) The superheater part of the LMA performs a feeding function, the implementation of which forms the coke mass in a state that meets the requirements of the technology. An important function of this part is also the preliminary (above the air blast horizon) heating of coke to ensure the completion of blast furnace smelting processes. A comparison of the structure of the MCM of two Japanese blast furnaces cooled during operation shows that operation at reduced smelting intensity leads to the degeneration of the stable central zone of low-mobility materials above the air blast horizon, which changes the conditions for preliminary heating of coke and the uniformity of its supply to the lower parts of the MCM. It is emphasized that continuous normal operation of powerful blast furnaces without an active feeding part of the MCM is impossible.

(3) The functional purpose of the middle part of the MCM, located between the horizons of the tuyeres and the nozzles (conditionally the working area), is to provide conditions for the formation of final cast iron and slag compositions, as well as the separation and accumulation of melts. The preferred option is to operate the furnace using high-quality coke, which

should preserve the strength, size, and porosity of the coke in the MCM as much as possible. At the same time, the carbon in the coke must be freely consumed in the necessary metallurgical reactions for the reduction of iron oxides and impurities, carbonization, and desulfurization of the metal. The example of a 5800 m³ blast furnace manufactured by SG (China) shows that the balance between the conflicting requirements for the physical and chemical properties of coke is maintained thanks to two processes that are beneficial for the working zone of the MCM. These are the positive effect of the "washing away" effect of melts on the strength of coke in the peripheral zone of the MCM and the slagging of coke pores in the chemically unloaded central zone of the MCM.

(4) The lower part of the low-mobility coke mass, which is located below the air blast horizon and immersed in molten cast iron, is functionally designated as the zone of gradual MCM depletion. Referring to the results of the study of the state of coke in this part and the known theoretical principles of the blast furnace process, the sequence of processes affecting the rate of MCM consumption has been formulated. In the order of these processes shifting downwards towards the clinker, these are: the capture of blast furnace slag and alkalis by the pores of the coke above and at the level of the cast iron trough; the desulfurization of the metal CaO of the transition slag and the restoration of SiO₂ at the coke-metal boundary and the carburization of cast iron. The latter process can be useful when using carbonaceous clinker. All of the above processes are accompanied by active graphitization of coke, which can be partially slowed down by reducing the supply of alkalis to the furnace.

References

1. Beppler, T., Langer, K., & Mulheims, K. et. al. (2000). Coke Quality and its Influence on the Lower Part of the Blast Furnace. *4-th European Coke and Ironmaking Congress Proceeding, Paris, France*, 1, 224-230.
2. Shimizu, M., Kimura, Y., & Shibata K. et. al. (1990). Control of gas and Liquid flow in blast furnace based on deadman coke dynamics. *Proc. 6-th Int. Iron and Steel Congr.*, 21-26, 2, 422-429.
3. Takahashi, H., Tanno, M., & Katayama, J. (1997). Burden descending behavior with renewal of deadman in a two dimensional cold model of blast furnace. *Opereshonzu risachi = Commun. Oper. Res. Soc. Jap*, 42, 5, 1354-1359.
4. Kriachko, H. Yu., & Siharov, Ye. M. (2023). *Designs of metallurgical units. Part 1. Designs of blast furnaces. DDTU*.
5. Rojima, K., Nishi, T., & Yamaguchi, T. et. al. (1977). Changes in the Properties of Coke in Blast Furnace. *Transactions ISIJ*, 17, 401-409.
6. Kerkonen, O. (2007). Optimization of charge composition at Ruukki's coke chemical plant depending on coke characteristics at the blast furnace tuyere level. *Ferrous Metals*, 7-8, 42-48.
7. Shiau, J.-S., Ko, Y.-C., Ho, C.-K., & Hung, M.-T. (2017). Result of Tuyere Coke Sampling with Regard to Applacation of Appropriate Coke Strength after reaction (CSR) for a Blast Furnace. *J. Min. Metall. Sect. B-Metall*, 53(2)B, 131-138.
8. Qing, Q. Lv., Yong, S. & Tian, P. D. et. al. (2021). A study on the characteristics of coke in the hearth of a superlarge blast furnace. *PLOS ONE*. March 3, 1-17. <https://doi.org/10.1371/journal.pone.0247051>.
9. Guo, Z., Jiao, K., & Zhang, J. et. al. (2021). Graphitization and Performance of Deadman Coke in Large Dissected Blast Furnace. *ACS Omega*, 6, 25430-25439. <https://doi.org/10.1021/acsomega.1c03398>.
10. Narita, K., Sato, T., Maekawa, M., Fukihara, S., Kanyama, H., & Sasahara, S. (1980). Report on the dismantling of the contents of blast furnace No.1 at the Amagasaki plant. *Tetsu to Hagané*, 13, 1975-1984.
11. Gudenu, G.-W., Sasabe, M., & Kraibich, K. (1977). Research on cooled furnaces in Japan. *Ferrous Metals*, 6-7, 13-17.
12. Kriachko, H. Yu., Barsukov, E. E., & Masterovenko, E. L. et. al. (2015). Quantitative assessment of formations in the blast furnace charge column. *Collection of scientific works of DDTU*, 2(27), 30-38.
13. Kriachko, H. Yu. (2004). On the behavior of silicon in the working space of a blast furnace. *Proceedings of the international scientific and technical conference dedicated to the 75th anniversary of KGGMK «Krivorozhstal»*, 337-341.

Надіслано до редакції / Received: 13.08.2025

Прийнято до друку / Accepted: 08.12.2025

Chuprynov Ye.V.¹, Kassim D.O.¹, Lyakhova I.A.¹, Hryhorieva V.G.¹, Rekov Yu.V.²

Development of calculation programs for batch mixtures for the production of agglomerate and pellets of a preferred chemical composition

¹State University of Economics and Technology, Kryvyi Rih, Ukraine

²Technical University "Metinvest Polytechnic" LLC, Zaporizhzhia, Ukraine

Чупринов Є.В.¹, Кассім Д.О.¹, Ляхова І.А.¹, Григор'єва В.Г.¹, Реков Ю.В.²

Розробка програм розрахунку шихтових сумішей для виробництва агломерату та окатишів заданого хімічного складу

¹Державний університет економіки і технологій, Кривий Ріг, Україна

²Технічний університет «Метінвест Політехніка», Запоріжжя, Україна

Abstract. The article presents the results of the development and implementation of computer programs for calculating the specific consumption of charge components in order to obtain sinter and pellets of a given chemical composition. The proposed calculation system takes into account the complete chemical compositions of all charge components, the degree of solid fuel burnout, removal of calcination losses and the required basicity of the product. The programs were tested in production conditions, which showed a significant increase in the accuracy of determining the chemical composition of sinter and pellets and a reduction in discrepancies between calculated and actual data. The results obtained confirm the effectiveness of using the proposed software in the production of agglomerated blast furnace raw materials. Research objective: increasing the accuracy of the chemical composition of the resulting product by improving the program for calculating charges for the production of sinter and pellets. The subject of the study is the methodology and algorithms for determining the optimal composition of the charge for the production of sinter and pellets, based on a complete chemical analysis of the components, technological parameters of sintering and mathematical modeling of the material balance. The object of the study is the technological process of preparing and processing a charge of iron ore raw materials, including ore components, fluxes and solid fuel, in order to obtain iron ore products of a given chemical composition. Research materials: the work used chemical analyses of iron-containing materials, fluxes and solid fuel, presented in the form of complete oxide compositions. For each group of materials, weighted average chemical compositions were determined according to their specific consumption. Research results: the developed software allows you to determine the specific consumption of charge materials, taking into account their humidity and losses during technological processing. The obtained data show that the proposed program is an effective tool for stabilizing the chemical composition of sinter and pellets. Scientific novelty: a complex algorithm for calculating the charge has been developed, which simultaneously takes into account the full chemical compositions of all components (ore, fluxes, solid fuel), the degree of carbon burnout, removal of losses during calcination and various basicity options. The use of a complete chemical analysis of the charge in the calculations allows to significantly reduce the discrepancy between the calculated and actual iron content in the sinter and improve the accuracy of the blast furnace production balance. Practical significance: the developed software can be directly implemented in sinter plants and in the production of pellets, ensuring high-precision calculation of the charge in real production conditions. Reducing the discrepancies between the calculated and actual chemical composition of the sinter increases the stability of the quality of the agglomerated raw material, which has a positive effect on the operation of blast furnaces. Optimization of the specific consumption of ore components, fluxes and solid fuel allows you to reduce material overspending and ensures the rational use of resources. Conclusions. A program has been developed for calculating the specific consumption of charge components for the production of agglomerated raw materials (sinter and pellets) for blast furnace smelting, which allows you to calculate the chemical composition of the finished product from a wide range of charge components with high accuracy (viscosity less than 0.05%). The calculation is carried out with an accuracy of up to the fourth decimal place. The calculation was tested in sinter and pellet production shops and showed a significant increase in the accuracy of the chemical composition of the resulting product compared to those used at enterprises.

Keywords: agglomerate, pellets, charge, chemical composition, material balance, basicity, solid fuel, fluxes, charge calculation, iron ore raw material.

Анотація. У статті представлені результати розробки та впровадження комп'ютерних програм для розрахунку питомої витрати компонентів шихти з метою отримання агломерату та окатишів заданого хімічного складу. Запропонована система розрахунку враховує повний хімічний склад усіх компонентів шихти, ступінь вигоряння твердого палива, усунення втрат при прокалюванні та необхідну основність продукту. Програми були випробувані у виробничих умовах, що показало значне підвищення точності визначення хімічного

складу агломерату та окатишів та зменшення розбіжностей між розрахунковими та фактичними даними. Отримані результати підтверджують ефективність використання запропонованого програмного забезпечення у виробництві залізорудної доменної сировини. Мета дослідження: підвищення точності визначення хімічного складу отриманого продукту шляхом уdosконалення програми розрахунку шихти для виробництва агломерату та окатишів. Предметом дослідження є методологія та алгоритми визначення оптимального складу шихти для виробництва агломерату та окатишів, що базуються на повному хімічному аналізі компонентів, технологічних параметрах спікання та математичному моделюванні матеріального балансу. Об'єктом дослідження є технологічний процес підготовки та переробки шихти залізорудної сировини, що включає рудні компоненти, флюси та тверде паливо, з метою отримання залізорудної продукції заданого хімічного складу. Матеріали дослідження: у роботі використано хімічні аналізи залізовмісних матеріалів, флюсів та твердого палива, представлених у вигляді повних оксидних складів. Для кожної групи матеріалів визначено середньозважені хімічні склади відповідно до їх питомої витрати. Результатами дослідження є розроблене програмне забезпечення, яке дозволяє визначати питому витрату шихтових матеріалів з урахуванням їх вологості та втрат під час технологічної обробки. Отримані дані показують, що запропоновані програма є ефективним інструментом для стабілізації хімічного складу агломерату та окатишів. Наукова новизна: розроблено комплексний алгоритм розрахунку шихти, який одночасно враховує повний хімічний склад усіх компонентів (руда, флюси, тверде паливо), ступінь вигоряння вуглецю, усунення втрат під час прокалювання та різні параметри основності. Використання повного хімічного аналізу шихти в розрахунках дозволяє значно зменшити розбіжність між розрахунковим та фактичним вмістом заліза в агломерації та підвищити точність виробничого балансу доменної печі. Практичне значення: розроблене програмне забезпечення може бути безпосередньо впроваджено на агломераційних фабриках та у виробництві окатишів, забезпечуючи високоточний розрахунок шихти в реальних виробничих умовах. Зменшення розбіжностей між розрахунковим та фактичним хімічним складом агломерації підтвержує стабільність якості агломерованої сировини, що позитивно впливає на роботу домennих печей. Оптимізація питомої витрати рудних компонентів, флюсів та твердого палива дозволяє зменшити перевитрат матеріалів та забезпечує раціональне використання ресурсів. Висновки. Розроблено програму для розрахунку питомої витрати компонентів шихти на виробництво залізорудної сировини (агломерату та окатишів) для доменної плавки, яка дозволяє розраховувати хімічний склад готової продукції з широкого спектру компонентів шихти з високою точністю (в'язкість менше 0,05 %). Розрахунок проведено з точністю до четвертого знака після коми. Розрахунок було апробовано в агломераційних цехах та цехах з виробництва окатишів і показано значне підвищення точності хімічного складу отриманого продукту порівняно з тими, що використовуються на підприємствах.

Ключові слова: агломерат, окатиші, шихта, хімічний склад, матеріальний баланс, основність, тверде паливо, флюси, розрахунок шихти, залізорудна сировина.

Introduction

The stability and controllability of the chemical composition of sinter and pellets is a key condition for the highly productive and energy-efficient operation of blast furnaces. Fluctuations in the content of the main components of the charge negatively affect the gas-dynamic mode of smelting, fuel consumption, and the quality of pig iron.

Traditional methods of calculating charge, used at many enterprises, do not take into account the complete chemical composition of charge materials, the degree of carbon burnout, desulfurization and basicity parameters, which leads to significant deviations of actual indicators from calculated ones.

In view of the above, there is a need to improve engineering calculation tools by creating software for calculating the specific consumption of charge components for the production of sinter and pellets for blast furnace smelting, which allow the chemical composition of the finished product to be determined with high accuracy from a wide range of charge components.

Analysis of literary data and problem statement

The iron ore sintering process remains a cornerstone of the blast furnace ironmaking industry, serving as a critical step for utilizing ore fines and introducing flux into the burden. As noted in [1], sintering improves furnace productivity by agglomerating fines, a process that shares similarities across iron, manganese, and chromite ores despite varying temperature requirements. Majumder and Ray [2] further elaborate on the fundamental bonding principles and the complex chemical and thermal reactions that convert fine

particles into agglomerates, emphasizing the impact of temperature, moisture, and chemical constituents on the final product. However, the inherent complexity, nonlinearity, and time-lag characteristics of sintering described in these fundamental texts have necessitated a shift towards advanced computational methods for process control.

In response to these complexities, recent literature highlights a significant transition towards Industry 4.0 technologies, specifically deep learning and data-driven modeling. Gong et al. [3] provide a comprehensive review of deep learning applications in sintering, noting that while the field is still in an exploratory stage, models for prediction and optimization are rapidly emerging. Similarly, Yan et al. [4] discuss the status of data-driven modeling, categorizing current research into parameter prediction, control, and optimization, while identifying deep learning as a key future direction. Building on these concepts, Liu et al. [5] present a "whole process intelligent manufacturing system" that integrates multiple models – including batch optimization and permeability prediction – to provide real-time decision support and fault tracing, thereby enhancing production efficiency.

A major focus of intelligent sintering is the precise control of sinter quality, particularly the FeO content and thermal state. Zhang et al. [6] analyze the difficulties in predicting FeO content due to process lags and review the evolution of prediction technologies. Addressing these challenges, Yang et al. [7] introduce a GRU-PLS model (Gated Recurrent Unit with Partial Least Squares), which captures deep inner structures of latent variables to predict FeO with significantly

lower error rates than traditional RNNs. Furthermore, Xiong et al. [8] propose a hybrid CNN-LSTM neural network that utilizes thermal imaging to monitor the sintering machine tail. This system effectively handles high noise and dust environments to predict quality indicators like underburning and FeO content, demonstrating tangible improvements in solid fuel consumption.

Beyond quality prediction, machine learning is extensively applied to raw material blending and productivity forecasting. Li et al. [9] explore intelligent ore blending models using genetic algorithms and particle swarm optimization to address the variability of imported iron ore and domestic resource constraints. Complementing this, Sun et al. [10] utilize a random forest model optimized by genetic algorithms to predict basic high-temperature properties, such as assimilation temperature and liquid phase fluidity, offering high accuracy for on-site ore blending. Regarding machine productivity, Mallick et al. [11] employ Artificial Neural Networks (ANN) to analyze the impact of constituents, finding that SiO_2 and Fe content positively influence productivity, while MgO and CaO can have detrimental effects.

Finally, environmental sustainability and energy efficiency are critical drivers for algorithmic innovation in sintering. Wang et al. [12] successfully apply a Naive Bayes classification algorithm combined with regression models to predict NO_x emissions with over 96% accuracy, allowing for proactive adjustments to denitrification processes. In terms of energy efficiency, Chen et al. [13] and Huang et al. [14] develop modeling methods utilizing Back-Propagation Neural Networks (BPNN) and K-means clustering to identify operating modes and optimize the Comprehensive Carbon Ratio (CCR). These approaches frame carbon reduction as a two-step optimization problem, successfully reducing energy consumption and emissions in practical applications. Collectively, these studies illustrate that the integration of hybrid neural networks and evolutionary algorithms is essential for modernizing the sintering process.

To ensure high-performance operation of blast furnaces with minimal specific energy consumption and smelting of high-quality cast iron, high-quality lumped iron ore raw materials (sinter and pellets) with minimal fluctuations in chemical composition, size and metallurgical characteristics are necessary. These properties can be achieved by using carefully averaged charge components in the warehouse, dosing each of them with automatic weighing dispensers with the required accuracy, in calculated ratios and specified technological parameters [15].

The calculations used in the sinter and pellet production shops of domestic metallurgical and mining and processing plants do not use the full chemical compositions of the charge components, the degree of combustion of solid fuel in the charge, the provision of a given amount of certain elements in the finished product, etc. For example, at sinter plant No. 3 of the sinter department of PJSC "ArcelorMittal Kryvyi Rih",

the calculation of the sinter charge is performed using modern computing equipment, but an abbreviated method is used (it is not difficult to make these calculations manually), which takes into account the content of only Fe, SiO_2 and CaO in the starting materials. In this regard, it is not surprising that when conducting an audit by the company's quality director, the iron content in the finished sinter most often differs from the calculated one by 1.5-2.0%, and the iron balance in blast furnace shop No. 1, with a norm of 980-995 kg/t of iron in different years, most often amounts to 1009-1015 kg/t of iron, and in some months it reaches 1028 kg/t of iron.

Purpose and objectives of research

The purpose of the study is to increase the accuracy of the chemical composition of agglomerate and pellets by improving the program for calculating the charges for their production.

To achieve the goal, the following tasks were defined: to analyze the shortcomings and limitations of existing methods for calculating charges for the production of sinter and pellets used at domestic metallurgical enterprises; to develop software that takes into account the full chemical compositions of all charge components, the degree of solid fuel burnout, desulfurization and other technological parameters; to create algorithms for calculating the specific consumption of components in a dry and wet state, taking into account production losses; to develop a method for determining the full chemical composition of sinter and pellets, which allows obtaining a product with specified characteristics and minimal material balance viscosity.

Materials and research methods

The work used chemical analyses of iron-containing materials, fluxes and solid fuels, presented in the form of complete oxide compositions. For each group of materials, weighted average chemical compositions were determined according to their specific consumption. The algorithm uses a system of material balance equations and approximate adjustment to achieve a minimum residual.

Research results

The Department of Metallurgical Technologies of the SUET has developed programs for calculating the specific consumption of charge components for the production of sinter and pellets and their specified complete chemical composition. The calculation is carried out to obtain 1000 kg of sintered (sinter) or calcined (pellets) product. As the initial components of the charge for the production of sinter or pellets, 13 types of iron-containing components, 8 types of fluxes and 5 types of solid fuel can be specified (Table 1). The specific consumption of each of the used charge components can be specified either in absolute figures in the initial wet state (kg/t of sintered sinter or calcined pellets), or in percentage terms among themselves in the dry mass of each type of starting materials.

Table 1. Prescribed ratio of charge components

№	Materi-als	Specified specific consumption of wet components, kg/t	Initial hu-midity, %	Specific con-sumption of dry with losses, kg/t	Mechani-cal losses, %	Specific consump-tion of dry without losses, kg/t	Ratio (n _{dc}) of dry com-ponents, %
1	2	3	4	5	6	7	8
Iron-containing:							
1	Ore 1	86,283	5,3	81,969	3,6	79,018	8,68
2	Ore 2	467,873	9,1	425,764	3,6	410,437	45,06
3	Ore 3	78,415	20,2	62,732	2,1	61,478	6,75
4	Ore 4	4,801	25,1	3,601	3,6	3,471	0,38
5	Ore 5	274,799	3,1	266,280	5,2	252,966	27,77
6	Ore 6	30,132	11,2	26,818	3,6	25,852	2,84
7	Ore 7	54,633	2,3	53,540	3,6	51,613	5,67
8	Ore 8	8,837	11,2	7,865	3,6	7,582	0,83
Flux:							
1	Flux 1	21,225	4,3	21,225	2,1	20,800	18,34
2	Flux 2	31,698	4,1	30,430	2,1	29,821	26,29
3	Flux 3	12,623	4,5	12,055	1,3	11,934	10,52
4	Flux 4	55,786	4,1	53,554	5,2	50,877	44,85
Solid fuel:							
1	Fuel 1	34,714	11,5	30,722	3,6	29,616	65,50
2	Fuel 2	40,304	59,85	16,182	3,6	15,599	34,50

In addition, the following parameters are set, which must be maintained to obtain the specified chemical compositions of the sinter or pellets (Table 2): a specified specific carbon consumption from solid fuel, the degree of burnout of this carbon during the sintering of the sinter or pellet firing process, the FeO content in the finished sinter or pellets, the degree of

desulfurization of the charge and the degree of removal of losses on calcination (RLC) from the charge. In addition, the absolute value of the required basicity of the sinter or pellets is set, which is calculated according to one of the three required options: No. 1 – CaO + MgO / SiO₂ + Al₂O₃; No. 2 – CaO + MgO / SiO₂; No. 3 – CaO / SiO₂.

Table 2. Preset parameters of the finished product

Parameter name	Dimension	Parameter value
Calculated product mass	kg	1000
Specific carbon consumption	kg/t	43,0
Calculated specific carbon consumption	kg/t	45,15
FeO content in the sinter	%	14,0
Degree of charge desulfurization	%	70,0
Degree of carbon burnout	%	95,0
Degree of RLC removal	%	95,8
Residual carbon content (C _r) in the sinter	%	0,23
Basicity of the agglomerate	unit	1,15
Choosing a basicity calculation option*		1÷3

* Basicity options: 1 – CaO+MgO / SiO₂+Al₂O₃; 2 – CaO+MgO / SiO₂; 3 – CaO / SiO₂

The full chemical compositions of all components of the charge are given (Table 3), and the sum of all oxides in each analysis must be brought to 100%, otherwise the program will not accept such an analysis. In addition to the oxides indicated in the table, the program provides the ability to calculate the charge when the charge components contain such oxides as MnO₂, Mn₂O₃, Mn₃O₄, TiO₂, V₂O₅, Cr₂O₃, NiO, Na₂O. These oxides were not included in the tables given due to a significant increase in their volume.

The chemical composition of solid fuel is analyzed by two indicators: the total chemical composition of ash and the technical analysis of solid fuel (Tables 3 and 4). Based on these two indicators, the program calculates the total chemical composition of solid fuel (Table

5).

To reduce the number of unknowns, and accordingly the number of equations, the program calculates the weighted average chemical compositions of the ore, flux and fuel parts of the charge (Tables 6, 7 and 8), after which it solves a system of equations, which includes material balance equations or basicity equations to determine the specific consumption of all charge components in the dry mass for the production of agglomerate or pellets. Then the specified component consumptions are converted, taking into account irreversible losses in production and moisture content in the starting materials, to the specific consumption of each material in the initial wet state.

Table 3. Chemical composition of the charge components, %

Nº	Materials	n _{dc} , %	Fe _{total}	Mn _{total}	P	S _{total}	FeO	Fe ₂ O ₃	SiO ₂	Al ₂ O ₃
1	2	3	4	5	6	7	8	9	10	11
Iron-containing:										
1	Ore 1	8,68	56,0		0,0349	0,0601	1,56	78,3315	11,5	2,5
2	Ore 2	45,06	65,3	1,3041	0,021	0,0445	27,1	63,2442	6,1	0,4
3	Ore 3	6,75	39,3	0,4027	0,013	0,0525	7,36	48,0091	5,5	1,4
4	Ore 4	0,38	39,3	1,4007	0,057	0,0185	8,2	47,0755	9,2	1,4
5	Ore 5	27,77	53,4	0,3098	0,032	0,0525	8,5	66,3295	9,4	1,3
6	Ore 6	2,84	34,1	2,5094	0,028	0,0185	10,1	37,6405	10,1	3,6
7	Ore 7	5,67	72,2	0,5808	0,042	0,0525	58,3	38,4827	0,9	0,3
8	Ore 8	0,83	3,9	26,8738	0,073	0,0185	–	5,64	26,3	0,3
Flux:										
1	Flux 1	18,34	0,543	0,015	0,043	0,032	0,31	0,54	2,12	0,38
2	Flux 2	26,29	32,21	2,8655	0,178	1,38	0,53	45,81	16,3	2,5
3	Flux 3	10,52	0,32	0,008	0,054	0,021	0,18	0,28	1,89	0,24
4	Flux 4	44,85	0,43	0,011	0,019	0,024	0,23	0,34	2,5	0,41
Solid fuel ash:										
1	Fuel 1	65,50	19,299	0,9681	0,23	1,14	–	27,5925	39,41	23,7
2	Fuel 2	34,50	8,12	1,1477	0,19	0,13	–	11,6095	43,42	15,78

Continuation of table 3

Nº	Materials	CaO	MgO	MnO	P ₂ O ₅	SO ₃	S _{other}	C _r	Other	RLC	Oxides
12	13	14	15	16	17	18	19	20	21	22	23
Iron-containing:											
1	Ore 1	0,35	0,2	0,64	0,08	0,045	0,020		3,638	1,72	100
2	Ore 2	0,35	0,2	0,052	0,048	0,270	0,045		0,409	0,2	100
3	Ore 3	15,4	4,7	0,52	0,031	0,072	0,053	9,1	7,578	0,48	100
4	Ore 4	12,0	4,7	0,91	0,130	0,161	0,019	4,4	11,19	0,1	100
5	Ore 5	10,8	1,3	0,4	0,073	0,073	0,053	0,5	0,938	0,48	100
6	Ore 6	9,8	0,8	0,45	0,064	0,091	0,019	23,5	1,091	0,1	100
7	Ore 7	0,33	0,6	0,75	0,096	0,084	0,053		0,705	0,48	100
8	Ore 8	7,7	1,8	34,7	0,167	0,110	0,019		29,08	0,1	100
Flux:											
1	Flux 1	80,06	6,3	0,21	0,32	0,08			0,300	10,9	100
2	Flux 2	24,95	4,5	3,7	0,36	3,45			0,093	1,38	100
3	Flux 3	52,86	2,7	0,01	0,24	0,05			0,880	42,12	100
4	Flux 4	41,5	10,3	0,07	0,03	0,06			9,410	43,95	100
Solid fuel ash:											
1	Fuel 1	3,45	1,34	1,25	0,47	2,28			3,258		100
2	Fuel 2	8,82	3,15	1,482	0,39	0,32			15,73		100

Table 4. Technical analysis of solid fuel, %

Nº	Materials	Ash (A _c)	S _{total}	C _r	Volatile	Total
1	Fuel 1	15,56	1,93	80,42	2,09	100
2	Fuel 2	15,82	0,37	57,3	26,68	100

Table 5. Chemical composition of solid fuel, %

Nº	Materials	Fe _{total}	Mn _{total}	P	S _{total}	Fe ₂ O ₃	SiO ₂	Al ₂ O ₃	CaO	MgO
1	Fuel 1	3,0029	0,1506	0,0286	1,9300	4,2934	6,1322	3,6877	0,5368	0,2085
2	Fuel 2	1,2846	0,1816	0,0255	0,3684	1,8366	6,8690	2,4964	1,3953	0,4983

Continuation of table 5

Nº	Materials	MnO	P ₂ O ₅	SO ₃	S _{other}	C _r	Other	RLS	Oxides
1	Fuel 1	0,1945	0,0655	0,3561	1,9286	80,4200	0,5069	2,0900	100
2	Fuel 2	0,2345	0,0583	0,3962	0,2100	57,3000	2,4898	26,680	100

Table 6. Weighted average chemical composition of the iron-containing mixture, %

№	Materials	n _{dc} , %	Fe _{total}	Mn _{total}	P	S _{total}	FeO	Fe ₂ O ₃
1	Ore 1	8,68	4,8585	0,2528	0,0030	0,0031	0,1353	6,7959
2	Ore 2	45,06	29,4270	0,5877	0,0096	0,0201	12,2124	28,5006
3	Ore 3	6,75	2,6528	0,0272	0,0118	0,0035	0,4968	3,2406
4	Ore 4	0,38	0,1498	0,0053	0,0003	0,0001	0,0313	0,1794
5	Ore 5	27,77	14,7206	0,0860	0,0319	0,0146	2,3609	18,4228
6	Ore 6	2,84	0,9679	0,0712	0,0279	0,0005	0,2838	1,0684
7	Ore 7	5,67	4,0802	0,0329	0,0419	0,0030	3,2868	2,1808
8	Ore 8	0,83	0,0329	0,0924	0,0729	0,0002		0,0469
Iron-containing mixture		100	58,0765	1,0458	0,0030	0,0482	18,9557	61,9675

Continuation of table 6

№	Materials	SiO ₂	Al ₂ O ₃	CaO	MgO	MnO	MnO ₂	Mn ₂ O ₃
1	Ore 1	0,9977	0,2169	0,0304	0,0174	0,3264		
2	Ore 2	2,7039	0,1803	0,1577	0,0901	0,0234		
3	Ore 3	0,3713	0,0945	1,0395	0,3173	0,0351		
4	Ore 4	0,0343	0,0053	0,0457	0,0179	0,0035		0,0038
5	Ore 5	2,6108	0,3611	2,9997	0,3611	0,1111		
6	Ore 6	0,2838	0,1022	0,2782	0,0227	0,0128		
7	Ore 7	0,0510	0,0170	0,0187	0,0136	0,0425		
8	Ore 8	0,2189	0,0025	0,0641	0,0150	0,2889	0,9013	
Iron-containing mixture		7,3060	0,9858	4,7247	0,8414	0,5324	0,9013	0,0038

Continuation of table 6

№	Materials	Mn ₃ O ₄	P ₂ O ₅	SO ₃	S _{other}	C _r	Other	RLS	Oxides
1	Ore 1		0,0054	0,0023	0,0017		0,3157	0,1492	8,6758
2	Ore 2		0,0022	0,1217	0,0201		0,1845	0,0901	45,0643
3	Ore 3		0,0027	0,0062	0,0035	0,6075	0,5115	0,0324	6,7500
4	Ore 4		0,0005	0,0006	0,0001	0,0168	0,0427	0,0004	0,3811
5	Ore 5		0,0203	0,0203	0,0146	0,1389	0,2605	0,1333	27,7747
6	Ore 6	0,0852	0,0018	0,0026	0,0005	0,6670	0,0310	0,0028	2,8384
7	Ore 7		0,0054	0,0048	0,0030		0,0399	0,0272	5,6668
8	Ore 8		0,0014	0,0009	0,0002		0,2421	0,0008	0,8324
Iron-containing mixture		0,0852	0,0069	0,1087	0,0447	1,4302	1,7597	0,4460	100

Table 7. Weighted average chemical composition of flux

№	Materials	n _{dc} , %	Fe _{total}	Mn _{total}	FeO	Fe ₂ O ₃	SiO ₂	Al ₂ O ₃
1	Flux 1	18,34	0,1135	0,0298	0,0568	0,0990	0,4584	0,0550
2	Flux 2	26,29	8,4304	0,7533	0,1393	12,0434	4,2853	0,6572
3	Flux 3	10,52	0,0353	0,0008	0,0189	0,0294	0,4208	0,0526
4	Flux 4	44,85	0,2223	0,0243	0,1032	0,1525	1,1213	0,7625
Flux mixture		100	8,8015	0,8082	0,3182	12,3243	6,2858	1,5273

Continuation of table 7.

№	Materials	CaO	MgO	MnO	Other	RLS	Oxides
1	Flux 1	14,6697	1,1002	0,0385	0,0550	1,9987	18,3371287
2	Flux 2	6,5593	1,1830	0,9727	0,0244	0,5889	26,2899722
3	Flux 3	5,4709	0,0526	0,0011	0,0926	4,4314	10,5209395
4	Flux 4	23,0988	0,3140	0,0314	4,2206	15,3349	44,8519596
Flux mixture		49,7987	2,6498	1,0437	4,3926	22,3539	100

Table 8. Weighted average chemical composition of solid fuel

No	Materials	n _{dc} , %	Fe _{total}	Mn _{total}	S _{total}	Fe ₂ O ₃	SiO ₂	Al ₂ O ₃	CaO
1	Fuel 1	65,50	1,9669	0,0987	1,2642	2,8122	4,0166	2,4155	0,3516
2	Fuel 2	34,50	0,4432	0,0626	0,0690	0,6336	2,3698	0,8613	0,4814
	Fuel mixture	100	2,4101	0,1613	1,3332	3,4458	6,3864	3,2767	0,8330

Continuation of table 8

No п/п	Materials	MgO	MnO	S _{other}	Cr	Other	RLS	Oxides
1	Fuel 1	0,1366	0,1274	1,2642	52,6751	0,3320	1,3690	65,5000136
2	Fuel 2	0,1719	0,0809	0,0690	19,7685	0,8590	9,2046	34,4999864
	Fuel mixture	0,3085	0,2083	1,3332	72,4436	1,1910	10,5735	100

Based on the chemical composition of each component of the charge and its calculated specific consumption in dry mass, the program calculates a balance sheet with the full chemical compositions of the charges before sintering the agglomerate or firing the pellets, the full chemical compositions of the finished product and the specific consumption of the charge components in the dry and initial wet state, taking into

account the specified non-returnable losses (Table 9). Moreover, the program, by means of approximations, ensures that the discrepancy in the calculation of the mass of the resulting agglomerate or pellets is less than 0.05%, while the permissible in practice is less than 1.0%, and the calculated basicity of the finished product absolutely corresponds to the specified one.

Table 9. Balance sheet of charge component consumption and chemical composition of sinter

Specific consumption of charge components		Fe _{total} , kg	Mn _{total} , kg	P, kg	S _{total} , kg	FeO, kg	Fe ₂ O ₃ , kg	SiO ₂ , kg	Al ₂ O ₃ , kg		
Components	Dry mass, kg/t	1	2	3	4	5	6	7	8	9	10
Iron-containing:											
Ore 1	80,127	44,871	0,3579	0,028	0,0482	1,2500	62,765	9,2147	2,0032		
Ore 2	416,2	271,77	5,4278	0,022	0,1852	112,79	263,22	24,972	1,6648		
Ore 3	62,341	24,500	0,2511	0,081	0,0327	4,5883	29,929	3,4288	0,8728		
Ore 4	3,5201	1,3834	0,0493	0,094	0,0007	0,2886	1,6571	0,3168	0,0493		
Ore 5	256,52	135,95	0,7947	0,032	0,1347	21,804	170,14	24,112	3,3347		
Ore 6	26,215	8,9394	0,6578	0,068	0,0048	2,6215	9,8675	2,6215	0,9437		
Ore 7	52,338	37,683	0,3040	0,043	0,0275	30,355	20,141	0,4710	0,1570		
Ore 8	7,6885	0,4283	2,0662	0,076	0,0014		0,6119	2,0221	0,0231		
Flux:											
Flux 1	15,866	0,3212	0,0152	0,1423	0,0218	0,2031	0,2475	0,3966	0,0476		
Flux 2	22,747	7,2790	0,6518	0,0871	0,0325	0,0705	10,328	3,7077	0,5687		
Flux 3	9,1030	0,7689	0,0713	0,0138	0,0248	0,3160	0,4296	0,3641	0,0455		
Flux 4	38,807	0,5673	0,0393	0,0176	0,0197	0,3702	0,3911	0,9702	0,6597		
Solid fuel:											
1	2	3	4	5	6	7	8	9	10		
Fuel 1	28,879	0,8672	0,0435	0,0186	0,5574		1,2399	1,7710	1,0650		
Fuel 2	15,212	0,1954	0,0276	0,0094	0,0304		0,2794	1,0449	0,3797		
Total charge	1054,2	544,72	10,382	0,7328	1,0327	175,14	584,16	75,731	11,471		
Gain (+), loss (-)					-0,723	-35,14	+39,05				
Sinter		544,72	10,383	0,7328	0,3099	140,00	623,21	75,731	11,471		

Continuation of table 9

Specific consumption of charge components		CaO, kg	MgO, kg	MnO, kg	MnO ₂ , kg	Mn ₂ O ₃ , kg	Mn ₃ O ₄ , kg	P ₂ O ₅ , kg	SO ₃ , kg
Components	Dry mass, kg/t								
Iron-containing:									
Ore 1	80,127	0,2804	0,1603	0,4621				0,0641	0,0622
Ore 2	416,2	1,4567	0,8324	0,2164	8,3240			0,0504	0,2391
Ore 3	62,341	9,6005	2,9300	0,3242				0,1857	0,0422
Ore 4	3,5201	0,4224	0,1654	0,0320		0,0352		0,2155	0,0009
Ore 5	256,52	27,7040	3,3347	1,0261				0,0734	0,1739
Ore 6	26,215	2,5691	0,2097	0,1180			0,7865	0,1559	0,0062
Ore 7	52,338	0,1727	0,3140	0,3925				0,0986	0,0355
Ore 8	7,6885	0,5920	0,1384	2,6679				0,1742	0,0018
Flux:									
Flux 1	15,866	12,6927	0,9519	0,0196				0,3262	0,0545
Flux 2	22,747	5,6753	1,0236	0,8416				0,1997	0,0812
Flux 3	9,1030	4,7336	0,0455	0,0920				0,0316	0,0621
Flux 4	38,807	19,9857	0,2717	0,0507				0,0403	0,0492
Solid fuel:									
Fuel 1	28,879	0,1550	0,0602	0,0562				0,0426	0,1028
Fuel 2	15,212	0,2122	0,0758	0,0357				0,0215	0,0603
Total charge	1054,2	87,0904	10,1997	5,8502	8,3240	0,0352	0,7865	0,0641	0,0801
Gain (+), loss (-)				5,8502	-0,184 -1,532 6,7924	-0,101 -0,004 0,0316	-0,069 -0,054 0,7315		-0,056
Sinter		87,0904	10,1997	13,4058				0,0641	0,0240

Continuation of table 9

Specific consumption of charge components		S _{other} , kg	C _r , kg	Other, kg	RLS, kg	Dry consumption, kg/t	Dry consumption with losses, kg/t	Humidity, %	Consumption of wet materials, kg/t
Components	Dry mass, kg/t								
Iron-containing:									
Ore 1	80,127	0,0161		2,9154	1,378	80,127	83,012	5,3	87,658
Ore 2	416,2	0,1852		1,7036	0,832	416,200	431,1832	9,1	473,828
Ore 3	62,341	0,0327	5,6107	4,7245	0,299	62,341	63,5878	20,2	79,4847
Ore 4	3,5201	0,0007	0,1549	0,3941	0,003	3,520	3,6468	25,1	4,8624
Ore 5	256,52	0,1347	1,2826	2,4061	1,231	256,520	269,3448	3,1	277,961
Ore 6	26,215	0,0048	6,1606	0,2860	0,026	26,215	27,1589	11,2	30,5157
Ore 7	52,338	0,0275		0,3689	0,251	52,338	54,2219	2,3	55,3284
Ore 8	7,6885	0,0014		2,2359	0,008	7,688	7,9653	11,2	8,9498
Flux:									
Flux 1	15,866			0,0476	1,729	15,8658	16,1831	4,3	16,9102
Flux 2	22,747			0,0211	0,509	22,7469	23,2018	4,1	24,1685
Flux 3	9,1030			0,0801	3,834	9,1030	9,1941	4,5	9,6273
Flux 4	38,807			3,6518	13,27	38,8072	40,7476	4,1	42,4454
Solid fuel:									
Fuel 1	28,879	0,5163	23,2251	0,1464	0,603	28,8798	29,9194	11,5	33,8073
Fuel 2	15,212	0,0063	8,7162	0,3787	4,058	15,2115	15,7591	59,85	39,2505
Total charge	1054,2	1,0007	45,1500	20,5776	28,12	1054,183	1089,397	8,05	1184,80
Gain (+), loss (-)		-0,7005	-42,892		-26,9				
Sinter		0,3002	2,2575	20,5776	1,181	1000,192			

Calculation error: [(1000 – 1000,192) / 1000]·100 = - 0,019 %

The full calculated chemical composition of the agglomerate is given in Table 10.

Table 10. Estimated chemical composition of the agglomerate, %

Material	Fe _{total}	Mn _{total}	P	S _{total}	FeO	Fe ₂ O ₃	SiO ₂	Al ₂ O ₃
Sinter	55,21	1,05	0,026	0,032	14,00	63,38	7,68	1,14

Continuation of table 10

Material	CaO	MgO	MnO	SO ₃	P ₂ O ₅	Cr	Other	RLS	Total oxides
Sinter	8,83	1,03	1,36	0,08	0,06	0,23	2,09	0,12	100

CaO / SiO₂ = 1,1497 units (at a given 1,15).

Conclusion

A program for calculating the specific consumption of charge components for the production of agglomerated raw materials (sinter and pellets) for blast furnace smelting has been developed, which allows for high-precision (residue less than 0.05%) calculation of the chemical composition of the finished product from a

wide range of charge components. The calculation is carried out with an accuracy of up to the fourth decimal place. The calculation was tested in sinter and pellet production workshops and showed a significant increase in the accuracy of the chemical composition of the resulting product compared to those used at enterprises.

References

1. Xiong, D.-l. et al. (2024). Development and application of an intelligent thermal state monitoring system for sintering machine tails based on CNN-LSTM hybrid neural networks *Journal of Iron and Steel Research International*. <https://doi.org/10.1007/s42243-024-01331-1>.
2. Jouhari, A. K. (2023). Basics of Iron Ore Sintering. *Proceedings of the International Conference on Metallurgical Engineering and Centenary Celebration*. Singapore, 394-399. https://doi.org/10.1007/978-981-99-6863-3_38.
3. Majumder, A., & Ray, B. C. (2025). Fundamentals of Sintering. *Engineering Materials*. Singapore, 17-44. https://doi.org/10.1007/978-981-96-4463-6_2.
4. Wang, B. et al (2025). Identification of working conditions and prediction of NOx emissions in iron ore fines sintering process. *Journal of Iron and Steel Research International*. <https://doi.org/10.1007/s42243-025-01504-6>.
5. Liu, S. et al. (2023). Research and application of the sintering whole process intelligent manufacturing system *Ironmaking & Steelmaking*, 1–15. <https://doi.org/10.1080/03019233.2023.2168929>.
6. Gong, Y.-h. et al. (2024). Application of deep learning in iron ore sintering process: a review / *Journal of Iron and Steel Research International*. <https://doi.org/10.1007/s42243-024-01197-3>.
7. Zhang, X.-y. et al. (2025). Research progress on prediction of FeO content in sinter based on intelligent algorithm. *Ironmaking & Steelmaking: Processes, Products and Applications*. <https://doi.org/10.1177/03019233241308937>.
8. Sun, Q.-k. et al. (2023). Proposing a machine learning approach to analyze and predict basic high-temperature properties of iron ore fines and its factors. *Journal of Iron and Steel Research International*. <https://doi.org/10.1007/s42243-023-01096-z>.
9. Yan, F. et al (2022). Data-Driven Modeling Methods in Sintering Process: Current Research Status and Perspectives/. *The Canadian Journal of Chemical Engineering*. <https://doi.org/10.1002/cjce.24790>.
10. Li, Y. et al. (2023). Research Progress of Intelligent Ore Blending Model. *Metals*, 13(2), 379. <https://doi.org/10.3390/met13020379>.
11. Chen, X. et al. (2016). Modeling and optimization method featuring multiple operating modes for improving carbon efficiency of iron ore sintering process. *Control Engineering Practice*, 54, 117-128. <https://doi.org/10.1016/j.conengprac.2016.05.007>.
12. Huang, X. et al. (2018). Soft-measuring models of thermal state in iron ore sintering process. *Measurement*. 130, 145-150. <https://doi.org/10.1016/j.measurement.2018.07.095>.
13. Mallick, A., Dhara, S., & Rath, S. (2021). Application of machine learning algorithms for prediction of sinter machine productivity. *Machine Learning with Applications*, 6, 100186. <https://doi.org/10.1016/j.mlwa.2021.100186>.
14. Yang, C. et al. (2022). Forecasting of iron ore sintering quality index: A latent variable method with deep inner structure / *Computers in Industry*, 141, 103713. <https://doi.org/10.1016/j.compind.2022.103713>.
15. Chuprynov, Y. et al. (2024). Increasing the efficiency of the furnace depending on the operating conditions of the furnaces. Part 2. The technology of joint loading of lumpy anthracite and fluxed local specs. *Economics and technical engineering*, 2(1), 107-118. <https://doi.org/10.62911/ete.2024.02.01.09>.

Надіслано до редакції / Received: 29.07.2025

Прийнято до друку / Accepted: 08.12.2025

CONTENT

Myronenko M.A.

Professors Andriy Pavlovich Vinogradov and Pavlo Terentiiovich Yemelyanenko and their role in the establishment and development of higher technical education in the Dnipro region 5

Nehrub S.L., Bonchuk S.V., Herasymchuk A.P.

The impact of object orientation during 3D printing on part quality 14

Romanko Y.V., Meshkova A.G., Gupalo O.V.

Study of the operation of a compact regenerator with different nozzles 21

Usenko R.V., Barkar R.R., Shemet V.Yu., Taranov A.A., Bilyi A.P., Yakymenko D.Yu.

The use of fly ash as a part of the forming iron-phosphate cold-hardening mixes 26

Leokha F.L., Khrychikov V.E.

Current trends in the production and application of titanium alloys 30

Grishin O.M., Velychko O.G., Grek O.S., Nadtochiy A.A.

Electromagnetic field effects on the kinetics of solid-state reduction of iron oxides with gases 37

Sobolenko M.A., Romanova N.S.

Structure formation during continuous cooling of deformed austenite of boron-containing steel 45

Mishalkin A.P., Kamkina L.V., Ivashenko V.P., Ankudinov R.V. Avtonomov D.V.

Analysis of the possibilities of creating an autonomous energy supply system for metallurgical production using hydrogen technology and using the physical heat of metallurgical equipment 50

Kriachko H.Yu., Siharov Ye.M.

Change in coke characteristics in a low-movement coke bed of blast furnaces 58

Chuprynov Ye.V., Kassim D.O., Lyakhova I.A., Hryhorieva V.G., Rekov Yu.V.

Development of calculation programs for batch mixtures for the production of agglomerate and pellets of a preferred chemical composition 69

CONTENT

3MICT

ЗМІСТ

Мироненко М.А.

Професори Андрій Павлович Виноградов та Павло Терентійович Ємельяненко та їхня роль у становленні та розвиткові вищої технічної освіти на Придніпров'ї

5

Негруб С.Л., Бончук С.В., Герасимчук А.П.

Вплив розташування об'єкту під час 3D-друку на якість деталі

14

Романько Я.В., Мешкова А.Г., Гупало О.В.

Дослідження роботи компактного регенератора з різними насадками

21

Усенко Р.В., Баркар Р.Р., Шемет В.Ю., Таранов А.А., Білий А.П., Якименко Д.Ю.

Використання золи-виносу у складі формувальних залізофосфатних холоднотвердіючих сумішей

26

Леоха Ф.Л., Хричиков В.Є.

Сучасні тенденції у виробництві і застосуванні титанових сплавів

30

Гришин О.М., Величко О.Г., Грек О.С., Надточій А.А.

Влияние электромагнитного поля на кинетику твердофазного восстановления оксидов железа газами

37

Соболенко М.О., Романова Н.С.

Структуроутворення за безперервного охолодження деформованого аустеніту борвмісної сталі

45

Мішалкін А.П., Камкіна Л.В., Іващенко В.П., Анкудінов Р.В., Автономов Д.В.

Аналіз можливостей створення автономної системи енергозабезпечення металургійного виробництва з використанням водневих технологій та фізичного тепла металургійного обладнання

50

Крячко Г.Ю., Сігарьов Є.М.

Зміна характеристик коксу в коксовому шарі з низьким рівнем руху доменних печей

58

Чупринов Є.В., Кассім Д.О., Ляхова І.А., Григор'єва В.Г., Реков Ю.В.

Розробка програм розрахунку шихтових сумішей для виробництва агломерату та окатишів заданого хімічного складу

69

CONTENT

78

ЗМІСТ

79

ТЕОРІЯ І ПРАКТИКА МЕТАЛУРГІЇ
науково-виробничий журнал

Засновники: Український державний університет науки і технологій
Відділення матеріалознавства і металургії
Академії інженерних наук України

Видавець: Український державний університет науки і технологій
Головний редактор – проф. Пройдак Ю.С.
Заст. головного редактора – д.т.н., проф. Камкіна Л.В.

Комп'ютерна верстка – Безшкуренко О.Г.

Адреса і місцезнаходження видавця:
Український державний університет науки і технологій,
вул. Лазаряна, 2, м. Дніпро, 49010, Україна.
Тел.: +38-056-373-15-44, **Email:** office@ust.edu.ua

Сайт наукового видання: <https://tpm.ust.edu.ua/>

Підписано до друку 08.12.2025 року.
Формат 60x84 1/8. Тираж 100 примірників.

THEORY AND PRACTICE OF METALLURGY
Scientific and Production Journal

Founders: Ukrainian State University of Science and Technologies
Department of Materials Science and Metallurgy
of the Academy of Engineering Sciences of Ukraine

Publisher: Ukrainian State University of Science and Technologies
Editor-in-Chief – Prof. Proidak Yu.S.
Deputy Editor-in-Chief – Ph.D., prof. Kamkina L.V.

Page layout by O.H. Bezhkurenko

Publisher's address and location:
Lazariana Str., 2, Dnipro, 49010, Ukraine
Phone: +38-056-373-15-44, **Email:** office@ust.edu.ua

Journal website: <https://tpm.ust.edu.ua/>

Signed for printing 08/12/2025.
Format 60x84 1/8. Edition of 100 copies.