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Abstract. The purpose of this study is to assess how Al can reduce energy consumption, labor intensity, and scrap rates,
thereby improving yield and long-term operational efficiency of investment casting foundries. The methodology includes
a literature review and feasibility analysis conducted using recent academic studies and industry case reports from 2013
to 2024. Additionally, the study conducted a basic cost-benefit analysis comparing implementation expenses with potential
annual savings in scrap reduction, labor optimization, and material efficiency. Findings indicate that key Al applications
include process-parameter modeling and machine learning prediction, and automated defect detection through deep
learning-based visual and radiographic inspection. Research shows that Al systems can reduce casting defects by 30—
50%, with substantial savings in labor and material costs. The study highlights low-cost and open-source options for Al
deployment, increasing accessibility for resource-constrained facilities. The originality of the paper is its emphasis on the
practical implementation of Al-driven quality control solutions for Ukrainian foundries, investment casting facilities in par-
ticular. The practical value of the study lies in a structured, actionable roadmap, including software and hardware require-
ments, and cost and ROI estimates, that can assist local foundries in beginning their Industry 4.0 transition with a focus
on quality optimization.

Key words: artificial intelligence, investment casting, quality control, defect detection, Ukrainian foundries, cost-benefit
analysis, process optimization.

AHomauisi. Memoro yb020 OoCriOKeHHs € OUiHKa moeo, ik wmy4Hud iHmenekm (L) moxe 3HU3umu crioxueaHHs1 eHe-
peii, mpydomicmkicms i pieeHb 6paKy, mum camum nidsuwyroqu 8uxio npudamHoi MpodyKuii ma dogeocmpokosy onepa-
uitiHy egpekmusHicms nugapHux nidnpuemcms. Memooduka 0ocrniOXeHHs 8KoYae 02150 HayKosoi rlimepamypu ma aHa-
11i3 douinbHOCMI Ha OCHOBI akmyarbHUX akademidHux docridxeHsb i 2any3esux Kelicie 3a nepiod 3 2013 no 2024 pik. Kpim
moeo, nposedeHo 6a3osuli aHania sumpam i 8u20d, WO MopieHIE sumpamu Ha ernposadxeHHs1 LLI 3 nomeHuitHUMU
WopiYHUMU 3a0WadxXeHHSMU 3a805IKU 3MEHWEeHHI0 bpaky, onmumisauii npaui ma nideuueHH echeKmusHoCmi 8UKOPU-
cmaHHA Mamepianis. Pe3ynbmamu rnokasyoms, W0 OCHOBHUMU HanpsmMamu 3acmocyeaHHs LLI € modentogaHHs mexHo-
JI02i4HUX napamMempie ma fpo2Ho3yeaHHs1 3@ 0OMOMO20K0 MallUHHO20 Ha8YaHHS, @ MaKoX asmomMamu308aHe 8Usi8-
neHHs1 OegheKkmie Ha OCHO8I 2rTU60K020 HagYaHHS 3 BUKOPUCMAaHHSIM 8i3yanibHO20 ma peHmaeHoepaghidyHo20 KOHMPOJO.
LocnidxeHHsi demoHecmpyromb, wo LLI-cucmemu MoXymeb 3HU3UMU Kinbkicmb deghekmie numea Ha 30—-50% i 3abesne-
Yumu 3Ha4yHy eKOHOMI0 sumpam Ha onnamy fpaui ma mamepianu. Y 0ocnioKeHHi npornoHytombcs docmyrnHi ma 6iok-
pumi npoepamHi piweHHs, wo nidsuuye moxnusicms erposadxeHHsi LLII 8 ymosax obmexeHozo 6rodxemy. Haykoea
HOB8U3Ha pobomu ronsi2ae 8 akUeHmi Ha npakmu4yHOMY 8rpo8adKeHHI pilieHb KOHMPOITo SKocmi Ha ocHosi Ll came Ha
YKpaiHCbKUX nugapHUX nidrnpuemMemesax, 30Kpema mux, wo 3aliMaromsCcs IUMmMsAM 3@ 8UMOITF08aHUMU MOOeSMU.
lNpakmuyHa 3Havywicme 00CIOKeHHS NoMsi2ae y CmMeOoPeHHi cmpykmyposaHoi ma rpuknadHoi 0POXHLOI Kapmu erpo-
sadxeHHs LI, ska ekmovyae sumoau 00 npoepaMHoeo U anapamHo20 3abesrneyeHHs], OPIEHMOBHI sumpamu ma OUiHKY
oKynHocmi iHeecmuuyjtl. Lle moxe dornomoemu ykpaiHCbKUM nugapHuUM ridnpuemcmeam posnodamu rnepexio 0o IHOycmpii
4.0 3 akueHmom Ha ornmumisaujito IKocmi.

Knro4doei crioea: wmyyHul iHmenekm, numms 3a 8UMOrIt8aHUMU MOOeSISIMU, KOHMPOITb SKOCMI, 8USIBIIEHHS Oeghek-
mis, yKpaiHCbKi nueapHi nidnpuemcmea, aHarnis aumpam i 8u2o0d, onmumisauyisi MPoyecis.

Introduction. The foundry industry is undergoing a
transformation driven by artificial intelligence (Al) and
Industry 4.0 technologies. Traditionally considered a
complex and heuristic-driven domain, metal casting
now benefits from data-driven insights for improved ef-
ficiency and quality. Recent surveys highlight an abun-
dance of research applying Al techniques (e.g., neural
networks, fuzzy logic, evolutionary algorithms) across
various casting processes (sand, die, continuous, and
investment casting) [1]. The goals range from optimiz-
ing process parameters and product design to predic-
tive quality assurance. This review provides an over-
view of key Al use case categories in foundries and the

most documented use case — quality control and de-
fect detection — focusing on investment casting.

Literature review. Quality control is paramount in
investment casting, and Al has made significant in-
roads in recent years. Traditional quality control in in-
vestment casting relies on expert knowledge, simula-
tion tools, and post-process inspections (like X-ray for
internal defects or destructive tensile tests for proper-
ties). These methods are time-consuming and often
catch problems only after a part is made. Al tech-
niques, by contrast, enable predictive and automated
quality control — identifying issues earlier or preventing
them.
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This review summarizes several key studies (span-
ning 2013 to 2024) demonstrating Al applications
broadly grouped into: (a) process-parameter modeling
and optimization for quality outcomes, and (b) auto-
mated inspection and defect identification.

On the modeling side, a number of works have
used data-driven models to capture the relationship
between process parameters and final part quality. For
example, Pattnaik et al. [2] optimized the wax pattern
production step using a grey—fuzzy logic approach,
which significantly improved the wax pattern quality (in
terms of dimensional accuracy and surface finish).

Improved wax patterns lead to better final castings,
since defects often originate in the pattern or mold. An-
other pioneering work by Sata & Ravi [3] collected data
from 800 heats of steel alloy investment castings and
used an ANN to predict mechanical properties (like
tensile strength and yield strength) from process pa-
rameters and alloy composition. This allowed them to
estimate if a casting would meet strength requirements
without waiting for lengthy destructive tests; notably,
both their ANN and a multivariate regression were
fairly accurate, with the ANN being a viable tool for pre-
dictive quality control.

Expanding on defect prediction, Sata [4] developed
a system to predict the occurrence of common defects
in steel investment castings (such as ceramic inclu-
sions, misruns, shrinkage porosity, etc.) using produc-
tion data. By applying principal component analysis
(PCA) to 24 process and composition variables from
500 casting batches, then feeding the reduced data
into various ANN models, the study could forecast de-
fect types before casting. The best model (an ANN with
a Levenberg—Marquardt learning algorithm) outper-
formed statistical regression in accuracy. Such a
model can warn engineers if a given batch is likely to
produce defects, enabling preemptive adjustments.

Similarly, Wang et al. [5] reported using an ensem-
ble of machine learning classifiers to predict final di-
mensional accuracy of complex cast parts early in the
process. Their framework provides an early warning if
a casting is predicted to be dimensionally out-of-toler-
ance, allowing corrections or mold changes to be
made in subsequent cycles.

On the inspection side, deep learning has revolu-
tionized how foundries perform quality inspection for
investment castings. Yousef & Sata [6] developed an
intelligent inspection system for investment cast steel
parts using deep CNN models. By training on a large
image dataset of cast components (with and without
defects), their system could automatically detect sur-
face defects like cracks, cold shuts, and other discon-
tinuities. Among the models evaluated, a residual neu-
ral network (ResNet) achieved the highest accuracy in
defect recognition and was integrated into a real pro-
duction line. This reduced the reliance on manual vis-
ual inspections and improved the consistency of defect
detection.

Another line of research has applied computer vi-
sion to X-ray radiographs of investment castings to au-
tomatically detect internal porosity or inclusions using
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deep learning, effectively automating radiographic in-
spection, which is critical for safety-critical steel com-
ponents [5].

Collectively, these studies prove that Al is enabling
a shift from reactive to proactive quality control in in-
vestment casting. Instead of inspecting and scrapping
defective steel castings post-production, foundries can
now predict and avoid defects, optimize process con-
ditions for quality, and efficiently screen for any anom-
alies with automated vision systems. This leads to a
higher yield of acceptable parts and lower production
costs. It also shortens the feedback loop in foundry
process development: data-driven models can quickly
highlight which process factors most strongly affect
quality, guiding engineers to focus on the right levers
(for instance, a model might reveal that a slight in-
crease in preheat temperature drastically reduces shell
cracking defects).

Finally, an emerging trend is the integration of these
Al tools into a digital twin of the investment casting pro-
cess. In a recent study, researchers built a digital twin
for a steel investment casting line that incorporated
machine learning models for defect prediction and real-
time process optimization. This allowed them not only
to predict defects and mechanical properties with high
fidelity, but also to prescribe corrective actions during
the casting process [5].

Study purpose and objectives. The goal of this
study is to explore the potential of implementing Al-
driven quality control at a Ukrainian investment casting
facility to lower energy, labor, and resource spending,
increase productivity, and achieve long-term financial
benefits. The core tasks included the research of suc-
cessful Al-powered quality control cases, the creation
of a basic software and hardware requirements list, as
well as the calculation of estimated spending and po-
tential economic benefits.

Methodology. This study employs a review and
applied feasibility analysis approach to assess the po-
tential implementation of Al-driven quality control sys-
tems in a Ukrainian investment casting facility. The re-
search methodology was divided into three primary
stages.

First, a comprehensive literature review was con-
ducted, focusing on peer-reviewed academic sources
indexed in Scopus and Web of Science, as well as
technical whitepapers from leading industrial Al ven-
dors. The literature review covered the years 2013 to
2024.

Second, based on insights from the literature, a
baseline implementation framework was developed to
assess practical feasibility. This included the identifica-
tion of data requirements, hardware and software
specifications, and potential local or regional vendors
for equipment and support. Open-source software so-
lutions and modular, scalable hardware components
were prioritized to reflect the constrained budgets typi-
cal of small-to-medium Ukrainian foundries.

Third, an economic impact estimation was per-
formed. This involved a basic cost-benefit analysis
comparing implementation expenses with potential



annual savings in scrap reduction, labor optimization,
and material efficiency. The ROl model was con-
structed using industry benchmarks and case studies
cited in the literature, with conservative assumptions
for production volumes and defect rates to ensure re-
alistic forecasting.

Findings. A Ukrainian investment casting foundry
can improve quality and reduce scrap by introducing
affordable Al-driven inspection and process monitor-
ing. The findings below outline data collection, hard-
ware, software, and economic benefits.

Implementing Al-driven quality assessment at a
Ukrainian investment foundry facility would necessitate
the collection of the following types of data:
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Visual inspection data: high-resolution images of
wax patterns, cores, wax trees, molds, and cast parts.
Multiple images per part (capturing all surfaces and an-
gles) are collected to spot surface defects like cracks,
misruns, or roughness.

Sensor data: melt temperature, chemistry parame-
ters, mold preheat temperature, pouring time, shell
cooling rate, etc.

Non-destructive testing data: X-ray radiography,
dye penetrant inspection with imaging under UV light,
etc.

Based on the training data input requirements and
Al model development and implementation, the basic
hardware requirements were estimated in Table 1 and
software requirements in Table 2.

Table 1 — Hardware requirements for implementing Al-powered quality control in an investment casting

foundry.
Category Equpment Requirements Vendors
1080p or hlgher . Basler, IDS, Visiobit, PromAuto-
o IP-rated casings to shield from X
. Industrial vision camera mation,
Cameras and light- dust and heat .
. Pixlab
ing 2 pcs
LED light enclosure Shadow and glare-free Phillips, OSRAM
Thermocouple (with data Real-time data loagin Siemens, Schneider Electric,
logger) 99Ing Endress+Hauser
Sensors and loT de-
vices Heat shieldin Arduino,
Microcontroller Wireless trangmission Raspberry Pi,
ASUS Tinker Board
CPU with GPU acceleration
Computing  hard- Industrial comouter Ventilated cabinet UPS backup | NVIDIA GTX/RTX series,
ware P power NVIDIA Jetson Nano or Xavier
Ethernet connection

Table 2 — Software requirements for implementing Al-powered quality control in an investment casting

foundry.
Application Software solutions Additional requirements Examples
. . . Cropping, contrast enhancement, back- [ OpenCV
Image preprocessing Open-source libraries
ground removal
ResNet
Convolutional neural network | Labeled images of quality and defective Xception
Defect recognition - YOLOv5
(CNN) castings
TensorFlow
PyTorch

Data analysis and

Regression or classification

Historical manufacturing process sen-

Scikit-learn Python li-

; algorithms,
forecasting ANN model sor data brary
Node-RED dash-
. i ) . Real-time monitoring, data logging, inte- | board
:Qttg?f;i[;on and user g;%i%g:rzesppﬂgaggnprem'Se gration with existing software ecosys- | Microsoft Azure loT
tem Hub

Azure Custom Vision
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Initially, the models require training on a dataset of
defect-free and defective parts (including minor and
major defect examples). Some defects may need to be
manufactured deliberately in trial castings or use his-
torical scrap parts to build a robust training set. The
model will require periodical updates if a new defect
type starts appearing or a new product line is intro-
duced. However, the system can continuously learn,
as modern Al platforms enable adding new sample im-
ages and re-training with little effort, improving accu-
racy over time.

Alternatively, Ukrainian foundries can rely on com-
mercial solutions from EU vendors. Norican’s Monitizer
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platform is one (used by foundries in Spain, Japan,
etc.), focusing on Al for casting processes. Another ex-
ample is Tvarit Al (Germany), which provides an Al
platform for die casting and could potentially be applied
to investment casting, emphasizing scrap reduction
through data analysis.

Discussion. Considering the significant financial
and time investment required to implement Al-driven
quality control in Ukrainian foundries, a careful calcu-
lation of estimated cost (Table 3) and economic bene-
fits, including a return on investment, is necessary to
facilitate decision-making.

Table 3 — Estimated cost of Al-powered quality control setup.

Software and hardware expenses Estimated cost
Industrial camera(s) and lens €2000

Lighting and enclosure €1000

Industrial computer with GPU €4000

Sensors and DAQ devices €1000

Software development €4000—€10000
X-ray unit €20000—€30000
Other expenses €2000

Total €34000-€50000

Additional annual costs can amount to €1000—
€3000 in software maintenance and updates, cloud
service subscriptions, storage upgrades, light replace-
ment, and camera calibration.

The estimated economic benefits of Al-powered
quality control implementation result from:

Yield improvement and scrap reduction. Al-driven
process optimization cuts scrap by 40-50% on aver-
age. In an investment casting context with higher part
cost, even a 10% scrap reduction could translate to
significant savings given the expensive alloy and en-
ergy per part. Moreover, if wax pattern inspection is au-
tomated, defective patterns can be recycled before in-
vesting labor and material in making a casting to im-
prove the yield and reduce wasted metal.

Labor cost savings. Implementing Al vision can
halve the manual effort needed for inspection. Al can
do the first-pass filtering 24/7, minimizing human over-
sight, including overtime, and reducing wage ex-
penses.

Energy and materials savings. Reducing scrap pre-
vents resource waste on remelting, pouring, and heat
treatment. Al-driven optimization improves process ef-
ficiency by recommending optimal pouring tempera-
ture and other technological parameters and lowers
energy usage and emissions in foundries.
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The estimated first-year ROl of Al-driven quality
control implementation in an investment casting facility
depends on its annual production, cost per part, the
scrap rate, labor cost, and energy and materials used:

ROI = EXEHAD71 5 100% (1)

Where S — scrap savings, pcs;

C — part cost;

L — labor savings;

M — energy and material savings;

| —initial investment

Conclusion. Al techniques enhance each stage of

quality control in investment casting. From optimizing
the wax patterns to predicting final part properties and
defects, and finally automating the inspection of cast
parts, Al provides a toolkit for elevating quality and con-
sistency. These methods are complementary: a
foundry could use predictive models to adjust process
settings before pouring, and then use deep learning in-
spection to catch any anomalies on the finished part.
Based on successful implementation cases, this study
provides a comprehensive roadmap of Al-driven qual-
ity control implementation, including hardware and
software requirements with potential vendors. The
cost-benefit analysis incorporates estimated expenses
and savings and a formular for calculating first-year
ROI.
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